Skip to main content
Log in

A review of lateritic soils and their use as landfill liners

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The role of a landfill liner in the waste management process cannot be overemphasized. They are usually made of clay soils or geosynthetic materials or both with the sole purpose of controlling the migration of leachates into underlying aquifers and soils thereby preventing contamination. The limited availability of clay soils and high cost of geosynthetics have necessitated the search for and use of different locally available materials. Lateritic soils are one of the most commonly used materials for landfill liners in the tropical areas, where they commonly occur. However, a comprehensive review of literature on the utilization of lateritic soils as landfill liners has not been reported. Conducting a systematic review of lateritic soils for landfill liner applications enables an enhanced understanding of their inherent characteristics and appropriateness. This, in turn provides vital insights for the design and construction of effective and economically sustainable waste containment systems. Hence, this paper reviews the nature and characteristics of lateritic soils and assesses their suitability for landfill lining applications through a thorough evaluation of the desirable geotechnical, geological and geochemical properties based on available literature and data. Data on the index and geotechnical characteristics of lateritic soils at two hundred and seventy-eight locations from different countries were collected from literature and assessed based on standard specifications for landfill liners. Furthermore, their leachate attenuation characteristics and improving their suitability for landfill liners through property amendments are presented. The review results indicate that lateritic soils possess suitable engineering properties with some interesting clay mineralogical compositions for lining applications. In addition, the desirable geotechnical properties of lateritic soils can also be improved by blending it with bentonite, fly-ash, sawdust and mine tailings. Although mineralogical transformations occur after permeation with landfill leachates, lateritic soils possess contaminant attenuation characteristics such as low diffusion, good sorption and cation exchange properties that are needed for landfill liner applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abdela H (2017) Evaluating the suitability of laterite soil stabilized with demolished materials as a road sub base. MSc Thesis, Addis Ababa Science and Technology University. p 112

  • Adebisi NO, Olufemi ST (2017) Assessment of stratified saturated subsoils for foundations design in part of southwestern Nigeria. J Eng Scie. 13:91–107. https://doi.org/10.21315/jes2017.13.7

    Article  Google Scholar 

  • Abedini A, Calagari AA, Hadjalilu B (2008) Geological-mineralogical characteristics and trace-elements geochemistry in Aghadjari bauxite deposit, south of Shahindezh, NW of Iran. Iran J Crystallogr Mineral. 16(2):1–17

    Google Scholar 

  • Adebisi NO, Adeyemi GO, Oluwafemi OS, Songca SP (2013) Important properties of clay content of lateritic soils for engineering project. J Geogr Geol. 5(2):99–115

    Google Scholar 

  • Adedokun SI, Oluremi JR (2019) A review of the stabilization of lateritic soils with some agricultural waste products. Int. J Eng. 27:63–73

    Google Scholar 

  • Adeola AJ, Dada RG (2016) Mineralogical and geochemical trends in lateritic weathering profiles on basement rocks in Awa-Oru Ijebu and its environ Southwestern Nigeria Global. J Geol Sci. 15:1–11

    Google Scholar 

  • Adeyemi GO, Wahab KA (2008) Variability in the geotechnical properties of a lateritic soil from southwestern Nigeria. Bull Eng Geol Environ. 59:39–45

    Article  Google Scholar 

  • Afolagboye LO, Talabi AO, Akinola OO (2016) Evaluation of selected basement complex rocks from Ado-Ekiti, SW Nigeria, as source of road construction aggregates. Bull Eng. Geol. Environ. 75:853–865. https://doi.org/10.1007/s10064-015-0766-1

    Article  Google Scholar 

  • Afolagboye LO, Talabi AO, Ajisafe YC, Alabi S (2017) Geotechnical assessment of crushed shales from selected locations in Nigeria as materials for landfill liners. Geotech Geol Eng. https://doi.org/10.1007/s10706-017-0213-0

    Article  Google Scholar 

  • Afolagboye LO, Talabi AO, Owoyemi OO (2021) The use of Polidori’s plasticity and activity charts in classifying some residual lateritic soils from Nigeria. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e07713

    Article  PubMed  PubMed Central  Google Scholar 

  • Alexander LT, Cady JG (1962) Genesis and hardening of laterite in soils. U.S. Department of Agriculture Tech. Bull. 1282.

  • Alhassan M, Mesaiyete E, Mustapha AM (2012) Clay mineralogy of lateritic soils derived from granite basement-a case study of Minna lateritic soils. J Geotech Eng. 17:1897–1903

    CAS  Google Scholar 

  • Allen A (2001) Containment landfills: the myth of sustainability. Eng Geol 60:3–19

    Article  Google Scholar 

  • Allen A (2007) Attenuation landfills—the future in landfilling. Pol Environ J 2:365–381

    Google Scholar 

  • Amadi A, Odedede O (2019) Attenuation of contaminants in landfill leachate by lateritic soil enhanced with bentonite. Geomech Geoeng. https://doi.org/10.1080/17486025.2019.1670872

    Article  Google Scholar 

  • Anand RR (2001) Evolution, classification and use of ferruginous regolith materials in gold exploration, Yilgarn Craton, Western Australia. J Geochem: Explor, Environ, Anal 1:221–236

    CAS  Google Scholar 

  • Arhin E, Jenkin, GRT, Cunningham E, Nude P (2015) Regolith mapping of deeply weathered terrain in savannah regions of the Birimian Lawra Greenstone Belt, Ghana. J Geochem Explor 159:194–207. https://doi.org/10.1016/j.gexplo.2015.09.008

  • Banakeng LA, Zame PZO, Tchameni R, Mamdem L, Bitom D (2016) Mineralogy and geochemistry of laterites developed on chlorite schists in Tchollire region North Cameroon. J Afr Earth Sci. https://doi.org/10.1016/j.jafrearsci.2016.03.007

    Article  Google Scholar 

  • Basu A, Sinha S (2021) Evaluation of mechanical strength and physical properties of indurated laterite with regard to in situ characterization of lateritic profile. Bull Eng Geol Env. https://doi.org/10.1007/s10064-021-02212-7

    Article  Google Scholar 

  • Bauer M (1898) Beitrage zur geologie der Seychelles insbesondere zur Kenntris des laterits. Menes Jahrb Miner Geol Palanot 2:163–219

    Google Scholar 

  • Bell FG (2007) Engineering geology, 2nd edn. Butterworth-Heinemann Publishers, Oxford, p 581

    Google Scholar 

  • Bello AA, Osinubi KJ (2009) Hydraulic conductivity of abandoned dumpsite soil. Proc. of International Conference, Faculty of Technology, Obafemi Awolowo University, Ile-Ife, Nigeria. (17–19th November, 2009).

  • Benson CH, And ZH, Wang X (1994) Estimating hydraulic conductivity of compacted clay liners. J Geotech Eng 120(2):336–387

    Article  Google Scholar 

  • Bourman RP, Ollier CD (2003) Reply to the Discussion of “A critique of the Schellmann definition and classification of laterite by R.P. Bourman andC.D. Ollier (Catena 47, 117e131). Catena. 52:8183. https://doi.org/10.1016/S0341-8162(02)00180-7

    Article  Google Scholar 

  • Bourman RP, Ollier CD (2002) A critique of the Schellmann definition and classification of “laterite.” CATENA. https://doi.org/10.1016/S0341-8162(01)00178-3

    Article  Google Scholar 

  • Buchanan F (l807) A Journey from Madras through to the Countries of Mysore. Canara and Malabar. 2: 436–46l.

  • Chalermyanont T, Arrykul S, Charoenthaisong N (2009) Potential use of lateritic and marine clay soils as landfill liners to retain heavt metals. Waste Manag. 29:117–127

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Xue-Min L, Hong-Nan L, Wei-Min Y, Yu-Jun C (2019) Adsorption property of Pb(II) by the laterite-bentonite mixture used as waste landfill liner. Adv Civil Eng. https://doi.org/10.1155/2019/2879156

    Article  Google Scholar 

  • Christensen TH, Cossu R, Stegmann R (1994) Principles of landfill barrier systems. In: TH Christensen, R Cossu, RE Stegmann FN Spon (eds) Landfilling of Waste Barriers chapter 11. CRC Press, New York. p 3–10.

  • Corsu R, Steggmann R (2018) Solid waste landfilling: concepts, processes and technologies. Elsevier, New York. https://doi.org/10.1016/C2012-0-02435-0

    Book  Google Scholar 

  • Daniel DE (1993) Clay liners. In: Daniel DE (ed) Geotechnical practice for waste disposal, Chapter 7. Chapman and Hall Ltd, London, pp 137–163

    Chapter  Google Scholar 

  • Daniel DE, Wu YK (1993) Compacted clay liners and covers for Arid sites. JGED, ASCE. 119(2):223–237

    Google Scholar 

  • Daramola SO, Malomo S, Asiwaju-Bello YA (2018) Premature failure of a major highway in Southwestern Nigeria: the case of Ipele-Isua highway. Int J Geoeng 9(20). https://doi.org/10.1186/s40703-018-0096-9

  • Datta B, Adhikari M (1972) Effect of weathering and parent materials on clay mineralisation-part III. J Indian Chem. Soc. L: 54–58

  • De Vallejo LG, Mercedes F (2011) Geological engineering. Balkema, Leiden, CRC Press, p 678

    Book  Google Scholar 

  • Eggleton RA, Taylor G, Gleher ML, Foster LD, Tilley DB, Morgan CM (2008) Regolith Profile, Mineralogy and Geochemistry of Wiepa Bauxite Nothern Australia. Aust J Earth Sci. 55:S27–S43

    Article  Google Scholar 

  • Endene E, Anggraini V, Gidigasu SSR (2019) A critical reappraisal of residual soils as compacted soil liners. SN Appl Sci. 1:460. https://doi.org/10.1007/s42452-019-0475-7

    Article  Google Scholar 

  • EPA (2000) Landfll manuals landfll site design. Environmental protection agency: Wexford, Ireland. www.epa.ie. Accessed 2021–2022

  • EPA (2001) Geosynthetic clay liners used in municipal solid waste landflls. EPA.Gov. https://www.epa.gov/landfills/geo-synthetic-clay-liners-used-municipal-solid-waste-landfills. Accessed 2021–2022

  • NSW EPA (2016) Environmental guidelines: solid waste landflls, second edition. In NSW Environment Protection Authority. https:// www.epa.nsw.gov.au/publications/waste/solid-waste-landfillguidelines-160259. Accessed 2021–2022

  • EPA (2021) Code of federal regulations (CFR), Title 40, Chapter 1, Subchapter I, Part 258: Criteria for municipal solid waste landfills, United States environmental protection agency, 2021. https://www.ecfr.gov/current/title-40/chapter-I/subchapter-I/ part-258

  • Farquhar GJ (1994) Experiences with liners using natural materials. In: Christensen TH (ed) Landfilling of wastes: barrier. E and FN Spoon, London, pp 37–53

    Google Scholar 

  • Favaretti M, Cossu R (2018) Mineral liners. In: Solid waste landfilling. Concepts, processes, technologies vol 7.2. Elsevier, New York. Pp 289–312. https://doi.org/10.1016/B978-0-12-40772

  • Fedoroff N, Courty MA, Guo Z (2018) Palaeosols and relict soils, a conceptual approach. In: Stoops G, Marcelino V, Mees F (eds) Interpretation of micromorphological features of soils and regoliths, 2nd edn. Elsevier, Amsterdam, pp 821–862

    Chapter  Google Scholar 

  • Fermor LL (1911) What is Laterite? Geol Mag. 8:454–462 (Decade 5, 507-516, 559-566)

    Article  ADS  Google Scholar 

  • Fernandez F, Quigley RM (1985) Hydraulic conductivity of natural clays permeated with simple liquid hydrocarbons. Can Geotech J 22:205–214

    Article  CAS  Google Scholar 

  • Frempong EM, Yanful EK (2006) Chemical and mineralogical transformations in three tropical soils due to permeation with acid mine drainage. Bull Eng Geol Env. 65:253–271

    Article  CAS  Google Scholar 

  • Frempong EM, Yanful EK (2008) Interactions between three tropical soils and municipal solid waste landfill Leachate. J. Geotech. Geoenviron. Eng. 134:379–396

    Article  CAS  Google Scholar 

  • Fritsch E, Montes-Lauar CR, Boulet R, Melfi AJ, Balan E, Magat P (2002) Lateritic and redomorphic features in faulted landscape near Manaus. Eur J Soil Sci 53:203–217

    Article  CAS  Google Scholar 

  • Fu W, Jianwen Y, Mengli Y, Baocheng P, Xijun L, Hujie N, Xiaorong H (2014) Mineralogical and geochemical characteristics of a serpentinite-derived laterite profile from East Sulawesi, Indonesia: implications for the lateritization process and Ni supergene enrichment in the tropical rainforest. J Asian Earth Sci. 93:74–88

    Article  ADS  Google Scholar 

  • Gaters WP, Nefiodoas A, Peter P (2004) Permeability of an organo modified bentonite to ethanol-water solutions. Clays Clay Min. 52(2):192–203

    Article  ADS  Google Scholar 

  • Ghosh S, Guchhait SK (2019) Laterites of the Bengal basin: characterization, geochronology, and evolution. Springer Cham

  • Ghosh S, Guchhait SK (2020) Laterites of the Bengal basin: characterization, geochronology and evolution. Springer Brief Geogr. https://doi.org/10.1007/978-3-030-22937-5

    Article  Google Scholar 

  • Gidigasu MD (1971) The importance of soil genesis in the engineering classification of Ghana soils. Eng Geol 5:117–161

    Article  Google Scholar 

  • Gidigasu MD (1972) Mode of formation and geotechnical characteristics of laterite materials of Ghana in relation to soil forming factors. Eng Geol. https://doi.org/10.1016/0013-7952(72)90034-8

    Article  Google Scholar 

  • Gidigasu MD (2012) Laterite soil engineering. Elsevier, Amsterdam, p 554p

    Google Scholar 

  • Gidigasu MD, Kuma, D.O.K. (1987). Engineering significance of lateritisation and profile development processes. Proc. 9th Reg. Conf. for Africa on Soil Mechanics and Foundation Engineering Lagos. 1: 3–20.

  • Giorgis I, Bonneto S, Giustetto R, Lawane A, Pantet A, Rossetti P, Thomassin JH, Vinai R (2014) The Lateritic profile of Balkouin Burkina Faso: geochemistry mineralogy and genesis. J African Earth Sci. https://doi.org/10.10016/j.jafrearsci.2013.11.006

    Article  Google Scholar 

  • Goswami RK (2005) Geotechnical and environmental performance of residual lateritic soil stabilised with fly ash and lime. Ph. D. Thesis, Indian Institute of Technology, Guwahati. India.

  • Guney Y, Aydilek AH, Tanyu BF, Kopral S (2014) Utilization of sepiolite materials as a bottom liner material in solid waste landfill. Waste Manag 34(1):112–124

    Article  CAS  PubMed  Google Scholar 

  • Gustavo Bogado O, Reinert HO, Franco MF (2017) Geotechnical properties of residual soils from the North-east of Argentina. Int J Geotech Eng. https://doi.org/10.1080/19386362.2017.1326682

    Article  Google Scholar 

  • Hu Yang DL, Lai Z, He Yuanjin YT, He Xin WJ, Zhongyuan LS (2019) Effects of bentonite on pore structure and permeability of cement mortar. Constr Build Mater 224:276–283. https://doi.org/10.1016/j.conbuildmat.2019.07.073

    Article  CAS  Google Scholar 

  • Ige OO (2013) Note on liners for containment of Leachate in sanitary landfills to enhance sustainable environment. Int J Dev Sci 2(1):380–389

    Google Scholar 

  • Iyaruk A, Promputthangkoon P, Lukjan A (2022) Evaluating the performance of laterite soil stabilized with cement and biomass nottom ash for use as pavement materials. Infrastructure. 7(66):1–18. https://doi.org/10.3390/infrastructures7050066

    Article  Google Scholar 

  • Joachin AWR, Kandiah S (1941) The composition of some local soil concretions and clays. Trop. Agricult. 96:67–75

    Google Scholar 

  • Jones RM, Murray EJ, Rix DW, Humphrey RD (1993) Selection of clays for use as landfill liners. Waste Dispos Landfill-GREEN 93:433–438

    Google Scholar 

  • Kamtchueng BT, Onana VL, Fantong WY, Ueda A, Ntouala RFD, Wongolo MHD, Ndongo GB, Ngo’o Ze A (2015) Geotechnical, chemical and mineralogical evaluation of lateritic soils in humid tropical area (Mfou, Central-Cameroon) Implications for road construction. Int J Geo-Eng. https://doi.org/10.1186/s40703-014-0001-0

    Article  Google Scholar 

  • Kasthurba AK, Santhanam M, Mathews MS (2008) Investigation of laterite stones for building purpose from Malabar region, Kerala state, SW India Part 1: field studies and profile characterisation. Constr Build Mater 21:73–82

    Article  Google Scholar 

  • Ko T (2014) Nature and properties of lateritic soils derived from different parent materials in Taiwan. Sci World J. 2014:4. https://doi.org/10.1155/2014/247194

    Article  CAS  Google Scholar 

  • Lacroix Α (1913) Les laterites de la Guinee et les produits d’alteration qui leur sont associes. Nouv Arch Mus Hist Nat 5:255–356

    Google Scholar 

  • Lecomte-nan GL, Lesueur E, Bonnet JP, Lecomte G (2009) Characterization of a lateritic geomaterial and its elaboration through a chemical route. Constr Build Mater. 23:1126–1132

    Article  Google Scholar 

  • Loi KS, Protz R, Ross GJ (1982) The relationships of the clay mineral suites to the parent rocks of eight soil profiles in Sarawak Malaysia. Geoderma 27(1982):327–334

    Article  ADS  CAS  Google Scholar 

  • Loughnan FC (1969) Chemical weathering of the silicate minerals. Elsevier, New York, p 154

    Google Scholar 

  • Lundgren R (1969) Field Performance of Laterite Soils. Proceding of the 7th International Conference of Soil Mechanics and Foundation Engineering. 2: 45–57.

  • Mahalinger-Iyer U, Williams DJ (1991) Engineering properties of a lateritic soil profile. Eng Geol. 31:45–58

    Article  Google Scholar 

  • Maignien R (1966) Review of Research on Laterites. UNESCO, Natural Research Series, IV, Paris. p 148

  • Majer E, Łuczak-Wilamowska B, Wysokiński L, Drągowski A (2007) Zasady oceny przydatności gruntów spoistych Polski do budowy mineralnych barrier izolacyjnych. [Rules for usability evaluation of cohesive soils for mineral liners]. ITB, Warszawa.

  • Malomo S (1977) The nature and engineering properties of some red soils from North-East Brazil. PhD Theses. University of Leeds.

  • Malomo S (1989) Microstructural investigation on laterite soils. IAEG Bull 39:106–109

    Google Scholar 

  • Martin FJ, Doyne HC (1930) Laterite and lateritic soils in Sierra Leone, 2. /. Agric. Sei. 20:135–143

    CAS  Google Scholar 

  • McQueen KG, Scott KM (2008) Rock weathering and structure of the regolith. In: Scott KM, Pain CF (eds) Regolith science. CSIRO Publishing, Clayton

    Google Scholar 

  • Mengue E, Mrouch H, Lancelot L, Eko RM (2017) Physiochemical and Consolidation properties of compacted lateritic soil treated with cement. Soil Found 57:60–79

    Article  Google Scholar 

  • Mesida EA (1987) The relationship between the geology and the lateritic engineering soils in the Northern Environs of Akure, Nigeria. Bull Eng Geol Environ 35:1–5

    Google Scholar 

  • Mesida EA (1989) Genetic influences on the compaction and CBR characteristics of three lateritic soils in Ile-Ife area, S.W. Nigeria. Proc 9th Reg Conf Africa SMFE 1:461–465

  • Mesida EA (2006) Highway failure over talc–tremolite schist terrain: a case study of the Ife to Ilesha highway, South Western Nigeria. Bull Eng Geol Environ 65:457–461

    Article  Google Scholar 

  • Met I, Akgun H, andTurkmenoglu A.G. (2005) Environmental geological and geotechnical investigations related to the potential use of Ankara clay as a compacted landfill liner material. Turkey Environ Geol 47:225–236

    Article  CAS  Google Scholar 

  • Metelka V (2011) Geophysical and remote sensing methodologies applied to the analysis of regolith and geology in Burkina Faso, West Africa. Ph.D. University of Toulouse. p 230

  • Millogo Y, Traore K, Ouedraogo R, Kabore K, Blanchart P, Thomassin JH (2008) Geotechnical, mechanical and mineralogical characterisation of a lateritic gravel of sapouy (Burkinafaso)used in road construction. Constr Build Mater. https://doi.org/10.1016/jconbuildmat.2006.07.014

    Article  Google Scholar 

  • Ministry of Housing and Local Government, Malaysia (MHLGM) (2004) The study on save closure and rehabilitation of landfill sites in Malaysia, Final Report. 5: 222

  • Mohamed AMO, Anita HE (1998) Geoenvironmental Engineering, volume 82, 1st edition. Elsevier science, New York. p 706

  • Mohamedzein YEA, Al-Rawas AA, Al-Aghbari MY (2005) Assessment of crushed shales for use as compacted landfill liners. Eng Geol 80:271–281. https://doi.org/10.1016/j.enggeo.2005.06.001

    Article  Google Scholar 

  • Muhsina T, Chandrakaran S (2019) Attenuation characteristics of laterite-fly ash-bentonite mix as liner. In: Indian geotechnical conference IGC2016 15–17 December 2016, IIT Madras, Chennai, India

  • Murray EJ (1998) Properties and Testing of Clay Liners. In: Dixon NE (ed) Proceedings of the symposium on geotechnical engineering of landfills. Thomas Telford, London, pp. 37–60

  • Narayanaswamy S (1992) Geochemistry and Genesis of Laterites in parts of Cannore district, North Kerala. Phd Thesis. Cochin University of Science and Technology, India. p 116.

  • Netterberg F (2014) Review of Specifications for the Use of Laterite in Road Pavements. UKAID Report. p 74

  • Ngo’o Ze A, Onana VL, Mvindi ATN, Ohandja HN, Eko RM, Ekodeck GE (2019) Variability of geotechnical parameters of lateritic gravels overlying contrasted metamorphic rocks in a tropical humid area (Cameroon): implications for road construction Arnaud. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-019-01488-0

    Article  Google Scholar 

  • Norat RCC, da Costa ML (2019) Characterization, usage and provenance of building rocks in the Fortress of Sao Jose of Macapa (Amazon, Brazil). Eng. Geol. 253:214–228

    Article  Google Scholar 

  • Norouzi A, Uygar E, Nalbantoglu Z (2022) A review on the efects of landfll leachate on the physical and mechanical properties of compacted clay liners for municipality landflls. Arab J Geosci. 15:1174. https://doi.org/10.1007/s12517-022-10430-wR

    Article  CAS  Google Scholar 

  • Nweke OM, Igwe EO, Nnabo PN (2015) Comparative evaluation of clays from Abakaliki Formation with commercial bentonite clays for use as drilling mud. Afr J Environ Sci Technol. 9(6):508–518. https://doi.org/10.5897/AJEST2015.1904

    Article  Google Scholar 

  • Oeltzschner H (1992) Anforderung an Die Geologie, Hydrogeologie und Geotechnik beim Bau von Deponie (Requirement of Geology, Hydrogeology, and Geotechnics in the Construction of Landfills). In: Thorme-KozmienskYKJ (ed) Abdichtung von Deponien und Altasten (Sealing of Landfills and Contaminated Site). E. F. Verlag fur Energie und Umwelttechnik GmbH (E.F. Publisher for Energy and Environmental Techniques). p 53–82.

  • Ogunsanwo O (1986) Basic index properties, mineralogy and microstructure of and amphibiolite derived lateritic soil. Bull Eng Geol Environ 33:1–6

    Google Scholar 

  • Ojo EB (2013) Investigation of the shear strength properties of some compacted lateritic soils. Int Conf Geotech Eng 13: 289–293

  • Ojuri OO, Akinwumi II, Oluwatuyi OE (2017) Nigerian lateritic clay soils as hydraulic barriers to adsorb metals. Geotechnical characterization and chemical compatibility. Environ Protect Eng. 43(4):209–222

    Article  Google Scholar 

  • Ojuri OO, Oluwatuyi OE (2018) Compacted sawdust ash-lime stabilised soil-based hydraulic barriers for waste containment. In: Proceedings of the institution of civil engineers – waste and resource management, 171(2). pp. 52–60

  • Okagbue CO, Yakubu JA (1999) A review on problem soil in engineering construction. J Mining Geol 35(2)237–252

  • Oldham RD (1893) A manual of the geology of India, 2nd edn. Geol. Sur. of India, Calcutta, pp 369–390

    Google Scholar 

  • Olofinyo OO, Olabode OF, Fatoyinbo IO (2019) Engineering properties of residual soils in part of Southwestern Nigeria: implication for road foundation. SN Appl Sci. 1:507. https://doi.org/10.1007/s42452-019-0515-3

    Article  Google Scholar 

  • Onana VLA, Hervé NO, Sylvie DN, Tang A, Ngo’o Z, Georges EE (2020) Behavior of major, trace, and rare earth elements in an a typical lateritic profile overlying micaceous quartzites, Centre Cameroon: imprint of the parent rock structure. Arab J Geosci 13:869. https://doi.org/10.1007/s12517-020-05838

    Article  Google Scholar 

  • Onana VL, Ngo’o ZA, Medjo Eko R, Ntouala RFD, Nanga Bineli MT, Ngono O, Ekodeck GE (2017) Geological identification, geotechnical and mechanical characterization of charnockite-derived lateritic gravels from Southern Cameroon for road construction purposes. Transp Geotech. 10:35–46

    Article  Google Scholar 

  • ÖNORM S 2074, (1990), “Geotechnik in Deponiebau –Erdarbeiten Osterreichisches”, Normungsinstitut, Wien, 27 pp

  • Onyelome K, Onuoha IC, Ikpeno O, Okafor F, Machaibuchi M, Kalu N, Agura P (2017) Nanostructured clay (NC) and the stabilization of lateritic soil for construction purposes. EJGE. 22(10):4177–4196

    Google Scholar 

  • Onyelowe KC, Ebid AM, Hanandeh S, Moghal AAB, Onuoha IC, Obianyo II, Stephen LU, Ubachukwu OA (2023) The influence of fines on the hydro-mechanical behavior of sand for sustainable compacted liner and sub-base construction applications. Asian J Civ Eng. https://doi.org/10.1007/s42107-023-00800-4

    Article  Google Scholar 

  • Otálvaro IV, Manoel PC, Bernardo C (2015) Compressibility and microstructure of compacted laterites. Transp Geotech 5:20–34

    Article  Google Scholar 

  • Otoko GR (2014) Dependence of shear strength and compressibility of tropical lateritic soils clay content. Int. J Eng Technol Res. 2(20):1–19

    Google Scholar 

  • Owoseni JO, Aro SO (2018) Effect of parent rock on liquid limits and compaction characteristics of residual lateritic soils. Iconic Res Eng J. 2(6):69–74

    Google Scholar 

  • Owoyemi OO, Adeyemi GO (2018) Characterisation of soils derived from different parent rocks from north central Nigeria. Proc Inst Civ Eng Constr Mater. https://doi.org/10.1680/jcoma.18.0002

    Article  Google Scholar 

  • Oyediran IA, Iroegbuchu CD (2013) Geotechnical characteristics of some Southwestern Nigerian Clays as barrier soils. Ife J Sci. 15(1):17–25

    Google Scholar 

  • Oyediran IA, Durojaiye HF (2011) Variability in the geotechnical properties of some residual clay soils from southwestern Nigeria. Int J Sci Eng Res. 2(9):235–2

    Google Scholar 

  • Oyelami CA (2017) Suitability of lateritic soils as construction material for sustainable housing development in Africa: a geological perspective. PhD Theses, University of Pretoria. p 234.

  • Oyelami CA, Alimi SA (2016) Geotechnical investigation of some failed sections along Osogbo-awo road, Osun-State Southwestern Nigeria. Ife J Sci. 17:87–95

    Google Scholar 

  • Oyelami CA, Van Rooy JL (2016a) A review of the use of lateritic soils in the construction/development of sustainable housing in Africa: a geological perspective. J Afr Earth Sci. https://doi.org/10.1016/j.jafrearsci.2016.03.018

    Article  Google Scholar 

  • Oyelami CA, Van Rooy JL (2016b) Geotechnical characterisation of lateritic soils from south-western Nigeria as materials for cost-effective and energy-efficient building bricks. Environ Earth Sci 75:1475. https://doi.org/10.1007/s12665-016-6274-1

    Article  ADS  CAS  Google Scholar 

  • Oyelami CA, Rooy Van (2018) Mineralogical characterisation of tropical residual soils from south-western Nigeria and its impact on earth building bricks. Environ Earth Sci. 77:178. https://doi.org/10.1007/s12665-018-7354-1

    Article  ADS  CAS  Google Scholar 

  • Partey F, David N, Samuel N, Robert N (2008) Arsenic sorption onto laterite iron concretions: temperature effect. J Colloid Interface Sci 321:493–500

    Article  ADS  CAS  PubMed  Google Scholar 

  • Pendelton RL, Sharasuvana S (1946) Analyses of some siamese laterites. Soil Sei 62:423–440

    Article  ADS  Google Scholar 

  • Philips JD, Pawlik L, Samonil Pavel (2019) Weathehring fronts. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2019.102925

    Article  Google Scholar 

  • Pinard MI, Netterberg F, Paige-Green P (2014) Review of specifications for the use of laterite in road pavements. Association of Southern African National Roads Agency. DFID – Contract: AFCAP/GEN/124, 74pp [online]. Available at: http://r4d.dfid.gov.uk/pdf/outputs/AfCap/Laterite-Final-AFCAPgen124-v140525.pdf [Accessed on March 18 2015]

  • Pullan RA (1967) A morphological classification of lateritic ironstones and ferruginised rocks in Northern Nigeria. Nigerian J Sci 1(2):161–177

    Google Scholar 

  • Qian X, Koerner RM, Gray DH (2002) Geotechnical aspects of landfill design and construction. Prentice Hall, New Jersey, p 717p

    Google Scholar 

  • Eggleton RA (2001) The regolith glossary. CRC LEME, Perth

    Google Scholar 

  • Rahman F (2000) Hydraulic conductivity and chemical compatibility of some victorian soils used as liners for waste containment. Phd Thesis University of Melbourne. p 393.

  • Rasheed RM, Moghal AAB, Rambabu S, Almajed A (2023) Sustainable assessment and carbon footprint analysis of polysaccharide biopolymer-amended soft soil as an alternate material to canal lining. Front Environ Sci 11:1214988. https://doi.org/10.3389/fenvs.2023.1214988

    Article  Google Scholar 

  • Regadío M, Black JA, Thornton SF (2020) The role of natural clays in the sustainability of landfill liners. Detritus. 12:100–113. https://doi.org/10.31025/2611-4135/2020.13946

    Article  Google Scholar 

  • Rosli RN (2019) The permeability and strength of compacted laterite soil-bentonite mixtures for landfill cover application. AWAM international conference on civil engineering. Penang, Malaysia.

  • Rowe RK, Quigley RM, Booker JR (1995) Clayey barrier systems for waste disposal facilities. E and FN Spon, London, p 390

    Book  Google Scholar 

  • Rowe RK, Quigley RM, Brachman RWI, Booker JR (2004) Barrier systems for waste disposal facilities. Taylor and Fancis/Spon, London, p 587p

    Google Scholar 

  • Schellmann W (1986) A new definition of laterite. In: Banerji PK (Ed) Lateritisation processes. Geological Survey of India Memoir. 120: 11e17.

  • Schellmann W (2003) Discussion of “A critique of the Schellmann definition and classification of laterite”. In: Bourman RP, Ollier CD (Eds) (Catena 47, 117e131). Catena. 52: 77e79. https://doi.org/10.1016/S0341-8162(02)00178–9.

  • Sinha S (2021) Influence of parent lithology on field appearances and engineering properties of indurated laterites under same geographical conditions. Eng Geol. https://doi.org/10.1016/j.enggeo.2021.106413

    Article  Google Scholar 

  • Sivarajasingham S, Alexander LT, Cady JG, Cline MG (1962) Laterite. Adv Agron. 14:1–60

    Article  CAS  Google Scholar 

  • Stoops G, Marcelino V (2018) Lateritic and bauxitic materials. In: Stoops G, de Melo Marcelino V, Mees F (eds) Interpretation of micromorphological features of soils and regoliths, 2nd edn. Elsevier, Amsterdam, pp 691–720. https://doi.org/10.1016/B978-0-444-63522-8.00024-3

    Chapter  Google Scholar 

  • Sunil BM, Shrihari S, Nayak, S (2009) Shear strength characteristics and chemical characteristics of leachate-contaminated lateritic soi. Eng Geol 106:20–25

  • Tardy Y (1997) Petrology of laterites and tropical soils. A.A. Balkerma. p 408

  • TCEQ (2017) Guidance for liner construction and testing for a municipal solid waste landfll. In Texas Commission on Environmental Quality (Issue September). http://www.tceq.texas.gov/publications/rg/rg-534/rg-534

  • IM Ugwu OA Igbokwe (2018) Sorption of heavy metals on clay minerals and oxides: a review. Adv Sorpt Process Appl. 10.5772.intechopen.80981

  • United Kingdom Environmental Protection Agency (U.K E.P.A.) (2014) Earthworks in landfill engineering, LFE 4. Bristol, UK. p 6.

  • United States Environment Protection Agency (1982): Surface Impoundments—Liner Systems, Final Cover and Freeboard Control. Draft RCRA Guidence Document, Office of Solid Waste, Washington, D. C. p 126.

  • USEPA (2004) Measurement of Fugitive Emissions at a Region I Landfill, EPA-600/R-04- 001, U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Research Triangle Park, NC, January

  • Vallerga BA, Rananandana N (1969) Characteristics of lateritic soils used in Thailand road construction. Highway Res Rec 284:86–103

    Google Scholar 

  • Van Olphen H (1977) An introduction to clay colloid chemistry: for clay technologists, geologists and soil scientists, 2nd Edition, Wiley, New York

  • Varghese T, Byju G (1993) Laterite soils. Their distribution, characteristics, classification and management. STEG, Government of Kerala, Thiruvananthapuram. p 116.

  • Velde B, Meunier A (2008) The origin of clay minerals in soils and weathered rocks. Springer, Berlin, Heidelberg, p 406

    Book  Google Scholar 

  • Villamizar MCN, Araque VS, Reyes CAR, Silva RS (2012) Effect of the addition of coal-ash and cassava peels on the engineering properties of compressed earth blocks. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2012.04.056

    Article  Google Scholar 

  • Wagner JF (1994) Concept of a double mineral base liner. In: Christensen TH, Cossu R, Stegmann R (eds) Landfilling of waste. Barriers, E. and F. N. Spon, London, pp 91–99

    Google Scholar 

  • Wagner JF (2013) Clay liners and waste disposal. Dev Clay Sci 5:663–676

    Article  CAS  Google Scholar 

  • Walther J (1915) Laterit in West Austalien. Zeitschrift der Deutschen Geologischen Gesellschaft. 67:13–140

    Google Scholar 

  • Warth H, Warth FJ (1903) The Composition of Indian LATERITE. Geol. Mag. Decade 4. 10:l54–l57

    Google Scholar 

  • Widdowson, M (2007) Laterites. In: Gornitz (Ed) Encyclopedia of paleoclimatology and ancient environments (4th ed) Dordrecht. p 514–517.

  • Widomski MK, Stepneiewski W, Musc-Pornorska A (2018) Clays of different plasticity as materials for landfill liners in rural systems of sustainable waste management. Sustainaibility. https://doi.org/10.3390/su10072849

    Article  Google Scholar 

  • Winterkorn FH, Chandrasekharan EC (1951) Laterites and their stabilisation. Highw. Res. Board, Wash Bull 44:10–29

    Google Scholar 

  • Yamusa YB, Mohammed HI, Ahmad K, Majid Z (2022) Geotechnical properties of tropical residual soils for sustainable landfilling. IOP Conf Series Earth Environ Sci. https://doi.org/10.1088/1755-1315/971/1/012023

    Article  Google Scholar 

  • Yong RN, Mulligan CN (2005) Natural attenuation of contaminants in soil. CRC Press, Florida, p 319

    Google Scholar 

  • Yong RN, Mulligan CN (2019) Natural and enhanced attenuation of contaminants in soil. CRC Press, Florida, p 324. https://doi.org/10.1201/9781315159195

    Book  Google Scholar 

  • Zelalem A (2005) Basic engineering properties of lateritic soils found in Nejo—Mendi Road construction area, Welega. MSc Thesis, Addiss Ababa University. p 97

Download references

Funding

This work was supported by the Tertiary Education Trust fund (TETFund) (Grant number [TETF/DASDT/UNIV/ONDO/ASTD/2017 V OL1]). Author S.O. Daramola. has received research support from TETFund.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by SO. Daramola and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. O. Daramola.

Ethics declarations

Conflict of interest

The authors affirm that there is no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daramola, S.O., Hingston, E.D.C. & Demlie, M. A review of lateritic soils and their use as landfill liners. Environ Earth Sci 83, 118 (2024). https://doi.org/10.1007/s12665-023-11392-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-023-11392-2

Keywords

Navigation