Skip to main content
Log in

Characterizing near-surface features of shallow shear wave velocity in the Way Ratai geothermal field

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Passive seismic activity measurements in the Way Ratai geothermal field are needed to identify near-surface features. In addition to the ease of measurement, passive seismic methods can be an initial solution in characterizing geological conditions. This study aims to characterize near-surface features using the dominant frequency (\({f}_{0}\)) pattern and 3D modeling of the shear wave velocity (\({V}_{s}\)). A total of 70 measurement points with intervals between points of approximately 500 m are scattered in the southern area of Mount Ratai. The \({f}_{0}\) curve was obtained using the horizontal-to-vertical spectral ratio (HVSR) method, while 3D modeling uses OpenHVSR. The characteristics of the surface rock layer identified by \({f}_{0}\) pattern is in the range of 0.2–2 Hz. Furthermore, the Kali Tiga and Margodadi fields show thick soft rock patterns near the surface, with an \({f}_{0}\) values between 0.6 and 0.8 Hz. The cross-section of the 3D model at a depth of 10 and 25 m is dominated by stiff soil layers, while at a depth of 35 m, it becomes very dense soil and soft rock. The characteristic of shear wave velocity (\({V}_{s}\)) in the geothermal field influenced by the clay alteration near the surface, ranging from 175 to 350 m/s. These results can explain the possibility of a thick cap rock layer feature in the Way Ratai geothermal field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data of this study are available from corresponding author on reasonable request.

References

  • Agostini L, Boaga J, Galgaro A, Ninfo A (2015) HVSR technique in near-surface thermal-basin characterization: the example of the Caldiero district (North-East Italy). Environ Earth Sci. https://doi.org/10.1007/s12665-015-4109-0

    Article  Google Scholar 

  • Al-Hassan MA, Iqbal M (2022) Volcanostratigraphy study of Way Ratai geothermal prospect in Pesawaran Regency, Lampung Province. IOP Conf Ser. https://doi.org/10.1088/1755-1315/1014/1/012005

    Article  Google Scholar 

  • Arintalofa V, Yuliyanto G, Harmoko U (2020) Subsurface characterization of Diwak-Derekan geothermal field by HVSR analysis method based on microtremor data. AIP Conf Proc. https://doi.org/10.1063/5.0030356

    Article  Google Scholar 

  • Barber AJ, Crow MJ, Milsom JS (2005) SUMATRA: geology, resources and tectonic evolution. The Geological Society

    Google Scholar 

  • Bard P-Y, Anastasiadis A, Atakan K & Azzara RM (2004) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurement, Processing and Interpretation SESAME European research project. In SESAME European research project WP12 – Deliverable D23.12 (Issue March). http://sesame-fp5.obs.ujf-grenoble.fr/index.htm%0AParticipating

  • Bignardi S, Mantovani A, Abu Zeid N (2016) OpenHVSR: imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion. Comput Geosci. https://doi.org/10.1016/j.cageo.2016.05.009

    Article  Google Scholar 

  • Darmawan IGB, Mulyasari R, Amirudin A, Efendi DS (2019) Uji validasi instrumen akselerometer ADXL345 untuk pengukuran kerentanan gempa dengan metode HVSR. Prosiding Seminar Nasional SINTA FT UNILA 2:85–92

    Google Scholar 

  • Darmawan IGB, Fahlevi DI, Yassar MF, Pramudya FA (2021a) Identifikasi Zona Reservoar Panas Bumi Berdasarkan Analisis fault fracture density citra digital elevation model ALOS PALSAR di Gunung Rajabasa. Buletin Sumber Daya Geologi 16(2):119–131. https://doi.org/10.47599/bsdg.v16i2.315

    Article  Google Scholar 

  • Darmawan IGB, Mulyasari R, Amukti R (2021b) Perbandingan Indeks Kerentanan Seismik Antara Instrumen Akselerometer ADXL345 Dengan REFTEK 130-SMHR Menggunakan MetodeHorizontal-to-Vertical Spectral Ratio. Jurnal Geofisika 19(1):10–16

    Google Scholar 

  • Darmawan IGB, Rustadi, Karyanto (2023) Hydrothermal fluid flow modeling using numerical simulation to identify potential reservoir zones in the Mount Rajabasa geothermal field. Kuwait J Sci. https://doi.org/10.1016/j.kjs.2023.02.025

    Article  Google Scholar 

  • Delliansyah R, Sule R & Nugraha AD (2015) Steam and brine zones prediction ınside an operated geothermal reservoir based on seismic velocities produced by double difference tomography. World Geothermal Congress 2015, April

  • Donovan R, Karyanto K, Dewanto O (2018) Studi Sifat Termal Batuan Daerah Lapangan Panas Bumi Way Ratai Berdasarkan Pengukuran Metode Konduktivitas Termal. Jurnal Geofisika Eksplorasi 4(3):103–119. https://doi.org/10.23960/jge.v4i3.44

    Article  Google Scholar 

  • Dorado-Vicente R, Romero-Carrillo P, Lopez-Garcia R & Diaz-Garrido FA (2013) Comparing planar pocketing tool paths via acceleration measurement. Procedia Eng 63:270–277. https://linkinghub.elsevier.com/retrieve/pii/S1877705813014550

  • FEMA 450 (2003) NEHRP recommended provisions for seismic regulations for new buildings and other structures. Part 1, Fema 450, 338

  • Foulger GR & Julian BR (2019) Applied microearthquake techniques for geothermal resource development

  • Haerudin N, Karyanto, Kuntoro Y (2016) Radon and thoron mapping to delineate the local-fault in the way Ratai geothermal field Lampung Indonesia. ARPN J Eng Appl Sci 11(7):4804–4809

    CAS  Google Scholar 

  • Haerudin N, Rustadi, Alami F, Yogi IBS (2020) The effect site analysis based on microtremor data using the Horizontal to Vertical Spectral Ratio (HVSR) method in the Bandar Lampung City. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1572/1/012075

    Article  Google Scholar 

  • Herak M (2008) ModelHVSR-A Matlab® tool to model horizontal-to-vertical spectral ratio of ambient noise. Comput Geosci. https://doi.org/10.1016/j.cageo.2007.07.009

    Article  Google Scholar 

  • Husein S, Setianto A, Nurseto ST & Koestono H (2015) Tectonic control to geothermal system of way Panas, Lampung, Indonesia. World Geotermal Congress, 1–12

  • Juanda AA, Wardhani ADK & Raharjo IB (2015) Microearthquake (MEQ) ınvestigation reveals the sumatran fault system in hululais geothermal field, Bengkulu, Indonesia. In: Proceedings World Geothermal Congress 2015, April

  • Julian BR, Foulger GR & Richards-Dinger K (2004) The Coso geothermal area: a laboratory for advanced MEQ studies for geothermal monitoring. Transactions - Geothermal Resources Council, 28.

  • Kanai K (1983) Engineering seismology. University of Tokyo Press

    Google Scholar 

  • Karyanto (2003) Pencitraan Bawah Permukaan Daerah Panas Bumi Way Ratai Lampung Dengan Metode Tahanan Jenis 2 Dimensi. Jurnal MIPA 9(3):55–59

    Google Scholar 

  • Karyanto, Darmawan IGB (2021) Pengujian prototipe ınstrumen pengukuran gradien termal di lapangan Panas Bumi Padang Cermin Pesawaran. Jurnal Teori Dan Aplikasi Fisika 9(2):175–184. https://doi.org/10.23960/jtaf.v9i2.2775

    Article  Google Scholar 

  • Karyanto, Haerudin N, Mulyasari R, Suharno, Manurung P (2020a) Geothermal potential assessment of Way Ratai area based on thermal conductivity measurement to measure thermal properties of rocks. J Earth Space Phys 45(4):89–98. https://doi.org/10.2205/jesphys.2020.267095.1007048

    Article  Google Scholar 

  • Karyanto, Sarkowi M, Hidayatika A, Ukhti F, Haerudin N & Darmawan IGB (2020b) Analisis heat loss dan pemetaan sebaran suhu permukaan manifestasi untuk menghitung sumber daya spekulatif energi listrik pada sistem panas bumi Way Ratai. SINTA 3. http://sinta.eng.unila.ac.id/prosiding/index.php/ojs/article/view/6/19

  • Karyanto, Haerudin N, Suharno, Darmawan I, Adli M, Manurung P (2021) Numerical modeling for the steady-state condition of the geothermal system in Way Ratai. J Appl Sci Eng 25(3):447–456

    Google Scholar 

  • Karyanto, Sihabudin A, Darmawan IGB (2022) Sensitivity test and enhancement of accelerometer instrument prototype capability in geothermal field. AIP Conf Proc 2563(1):70002. https://doi.org/10.1063/5.0103246

    Article  Google Scholar 

  • Khalil AE, Nawawi M, Arifin MH, Abdullah FM, Kayode JS, Usman N, Arisona A (2017) Soil investigation at wet world hot spring complex for future development using active multichannel analysis of surface waves. Sains Malaysiana. https://doi.org/10.17576/jsm-2017-4604-04

    Article  Google Scholar 

  • Kurtuluş C, Sertçelik İ, Sertçelik F, Livaoğlu H, Saş C (2020) Investigation of soil characterization in Hatay province in Turkey by using seismic refraction, multichannel analysis of surface waves and microtremor. Earth Sci Res J. https://doi.org/10.15446/esrj.v24n4.79123

    Article  Google Scholar 

  • Lehujeur M, Vergne J, Schmittbuhl J, Maggi A (2015) Characterization of ambient seismic noise near a deep geothermal reservoir and implications for interferometric methods: a case study in northern Alsace, France. Geothermal Energy. https://doi.org/10.1186/s40517-014-0020-2

    Article  Google Scholar 

  • Mangga SA, Amirudin, Suwarti T, Gafoer S, Sidarto (1993) Geological map of tanjungkarang, sumatra. Geological Research and Development Centre, Bandung

    Google Scholar 

  • Pramono B, Colombo D (2005) Microearthquake characteristics in Darajat geothermal field, Indonesia. World Geothermal Congress 2010:1772

    Google Scholar 

  • Pratama W, Rustadi (2019) Aplikasi Metode Geolistrik Resistivitas Konfigurasi Wenner-Schlumberger untuk Mengidentifikasi Litologi Batuan Bawah Permukaan dan Fluida Panas Bumi Way Ratai di Area Manifestasi Padok di Kecamatan Padang Cermin Kabupaten Pesawaran Provinsi Lampung. Jurnal Geofisika Eksplorasi 5(1):30–44

    Article  Google Scholar 

  • Rananda E, Prabowo L, Prabowo AP, Rasimeng S, Yogi IBS (2020) Analysis and Zonation of Land Vulnerability Areas in Pekon Karangrejo Ulubelu Tanggamus using microzonation method. Jurnal Geofisika 18(1):14–18

    Article  Google Scholar 

  • Saadi A, Issaadi A, Semmane F, Yelles-Chaouche A, Galiana-Merino JJ, Layadi K, Chimouni R (2023) 3D shear-wave velocity structure for Oran city, northwestern Algeria, from inversion of ambient vibration single-station and array measurements. Soil Dyn Earthquake Eng. https://doi.org/10.1016/j.soildyn.2022.107570

    Article  Google Scholar 

  • Sewell SM, Cumming W, Bardsley CJ, Winick J, Quinao J, Wallis, Sherburn S, Bourguignon S, Bannister & Steven (2013) Interpretatıon of mıcroearthquakes at the Rotokawa geothermal fıeld, 2008 to 2012. In: 35th New Zealand Geothermal Workshop: 17–20 November 2013, Rotorua, New Zealand

  • Sinaga RP, Rosid MS, Ramadhan I (2020) Delineation of the permeable zone using microearthquake data in the geothermal field R. IOP Conference Series: Earth Environ Sci 481(1). https://doi.org/10.1088/1755-1315/481/1/012048

  • Sudjono DS, Harmoko U, Yuliyanto G (2019) Delineation of geothermal manifestation in Sangubanyu area based on microtremor HVSR method. E3S Web Conf. https://doi.org/10.1051/e3sconf/201912514012

    Article  Google Scholar 

  • Suharno S, Amukti R, Hidayatika A, Putroi MK (2015) Geothermal Prospect of Padang Cermin Pesawaran Lampung Province, Indonesia. In: Proceedings World Geothermal Congress, April, pp 1–7

  • Suryadi, Haerudin N, Karyanto, Sudrajat Y (2017) Identifikasi struktur bawah permukaan lapangan panas bumi way ratai berdasarkan data Audio Magnetotelluric (AMT). J Geofisika Eksplorasi 3(1):85–97

    Google Scholar 

  • Tsai NC, Housner GW (1970) Calculation of surface motions of a layered half-space. Bull Seismol Soc Am. https://doi.org/10.1785/bssa0600051625

    Article  Google Scholar 

  • Wahida A, Wijaya H, Yudistira T, Sule MR (2018) Ambient noise tomography for geothermal exploration, a case study of WWs geothermal field. AIP Conf Proc. https://doi.org/10.1063/1.5047386

    Article  Google Scholar 

  • Wathelet M, Chatelain J-L, Cornou C, Giulio GD, Guillier B, Ohrnberger M, Savvaidis A (2020) Geopsy: a user-friendly open-source tool set for ambient vibration processing. Seismol Res Lett 91(3):1878–1889. https://doi.org/10.1785/0220190360

    Article  Google Scholar 

  • Zaenudin A, Darmawan IGB, Farduwin A, Wibowo RC (2022) Shear wave velocity estimation based on the particle swarm optimization method of HVSR curve inversion in Bakauheni district Indonesia. Turkish J Earth Sci. https://doi.org/10.55730/1300-0985.1815

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ratai ceria team and Mr. Aceng, who have assisted in the data acquisition process at the Way Ratai geothermal field. We would like to thank the LPPM University of Lampung and the Geothermal Laboratory from the Department of Geophysics Engineering for supporting equipment and laboratory testing.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Karyanto wrote the main manuscript text and shear wave modeling, Acep Sihabudin and I Gede Boy Darmawan conducted data acquisition in the field, Suharno and Posman Manurung supervised the modeling results and reviewed the manuscript.

Corresponding author

Correspondence to Karyanto.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karyanto, Sihabudin, A., Darmawan, I.G.B. et al. Characterizing near-surface features of shallow shear wave velocity in the Way Ratai geothermal field. Environ Earth Sci 83, 90 (2024). https://doi.org/10.1007/s12665-023-11235-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-023-11235-0

Keywords

Navigation