Skip to main content

Advertisement

Log in

Impacts on groundwater-related anthropogenic activities on the development of sinkhole hazards: a case study from Central Mexico

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The local population in an agricultural field in Puebla State's sub-urban has been affected by the prolonged drought periods and exceptional precipitation events of 2021, modifying the urban, agricultural, and industrial activities in the region. The main objective is to identify the geohydrology, climatology, geophysical, and geomechanics proxies to understand the new phenomenon that led to the formation of the sinkhole in the non-karstic zone. The results revealed that the sand and silt particles of the volcanic sediments have been removed from the agricultural subsoil probably due to the intense exploitation of groundwater. Moreover, the exploitation strata indicated the existence of organic silt at 15 and 25 m, with high compressibility, less mass volume, and high water saturation conditions. Henceforth, these strata were considered as anomalies with low resistivity that are related to strong fluctuations in the water table that favored the collapse. Results of the void calculation formulation and the correlation with the removal of sediments of erosive susceptibility in the subsoil strata adjacent to the sinkhole demonstrate that the removal of sediments causes the collapse due to removal of finer sediments. The data integration allows us to determine that the sinkhole has been formed because of a combination of factors such as subsoil erosive conditions, extraordinary hydrometeorological events, hydraulic gradient flows, and the intense exploitation of groundwater in the region. Detecting the causes of sinkholes can predict the susceptibility of the territories, elaborate strategies to avoid risk, anticipate response–mitigation actions, and sustain the water safety plans for sustainable public policies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  • Ali H, Choi J (2020) Risk prediction of sinkhole occurrence for different subsurface soil profiles due to leakage from underground sewer and water pipelines. Sustainability 12(1):310

    Article  Google Scholar 

  • Amanatidou E, Vargemezis G, Tsourlos P (2022) Combined application of seismic and electrical geophysical methods for karst cavities detection: a case study at the campus of the new University of Western Macedonia, Kozani, Greece. J Appl Geophys 196:104499. https://doi.org/10.1016/j.jappgeo.2021.104499. (ISSN 0926-9851)

    Article  Google Scholar 

  • Arroyo-Cabrales J, Polaco OJ, Johnson E, Ferrusquía-Villafranca I (2010) A perspective on mammal biodiversity and zoogeography in the Late Pleistocene of México. Quat Int 212(2):187–197. https://doi.org/10.1016/j.quaint.2009.05.012. (ISSN 1040-6182)

    Article  Google Scholar 

  • American Society for Testing and Materials (ASTM International) (2018) ASTM D4318 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. https://doi.org/10.1520/D4318-17

  • American Society for Testing and Materials (ASTM International) (2019) ASTM D1586 Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils. https://doi.org/10.1520/D1586-11

  • Bakhshipour Z, Huat B, Ibrahim S, Asadi A, Kura N (2013) Application of geological techniques for 3D geohazard mapping to delineate cavities and potential sinkholes in the northern part of Kuala Lumpur, Malaysia. Sci World J. https://doi.org/10.1155/2013/629476

    Article  Google Scholar 

  • Baluch K, Kim J-G, Kim J-G, Ko YH, Jung S-W, Baluch SQ (2022) Assessment of sinkholes investigations in Jangseong-Gun Area, South Korea, and recommendations for similar studies. Int J Environ Res Public Health 19:1111. https://doi.org/10.3390/ijerph19031111

    Article  Google Scholar 

  • Bery A (2013) High resolution in seismic refraction tomography for environmental study. Int J Geosci 4(4):792–796. https://doi.org/10.4236/ijg.2013.44073

    Article  Google Scholar 

  • Boualla O, Fadili A, Najib S, Mehdi K, Makan A, Zourarah B (2021) Assessment of collapse dolines occurrence using electrical resistivity tomography: case study of Moul El Bergui area, Western Morocco. J Appl Geophys 191:104366. https://doi.org/10.1016/j.jappgeo.2021.104366. (ISSN 0926-9851)

    Article  Google Scholar 

  • Brinkmann R, Parise M, Dye D (2008) Sinkhole distribution in a rapidly developing urban environment: Hillsborough County, Tampa Bay area, Florida. Eng Geol 99(3):169–184

    Article  Google Scholar 

  • Brock-Hon A, Hon K, McCarragher S (2019) Geomorphic and geophysical evidence of a collapse origin for large sandstone depressions atop the western Cumberland Plateau in Tennessee. Geomorphology 343:168–182. https://doi.org/10.1016/j.geomorph.2019.07.005. (ISSN 0169-555X)

    Article  Google Scholar 

  • Castro-Govea R, Siebe C (2007) Late Pleistocene-Holocene stratigraphy and radiocarbon dating of La Malinche volcano, Central Mexico. J Volcanol Geotherm Res 162(1–2):20–42. https://doi.org/10.1016/j.jvolgeores.2007.01.002. (ISSN 0377-0273)

    Article  Google Scholar 

  • CONAGUA, 2015. Actualización de la disponibilidad media anual del agua en el acuífero

  • Cruz JA, Alarcón-D I, Figueroa-Castro DM, Castañeda-Posadas C (2021) Fossil pigmy rattlesnake inside the mandible of an American mastodon and use of fossil reptiles for the paleoclimatic reconstruction of a Pleistocene locality in Puebla, Mexico. Quat Int 574:116–126. https://doi.org/10.1016/j.quaint.2020.10.058. (ISSN 10406182)

    Article  Google Scholar 

  • Custodio E, Llamas MR (1996) Hidrología Subterránea. OMEGA, 2nd edn ISBN-13:978-8428204477

  • Das BM, Sivakugan N (2018) Geotechnical properties of soils. In: Principles of foundation engineering (pp. 12–16). Cengage learning. ISBN 1337705020

  • Díaz-Sibaja R, Jiménez-Moreno FJ, Palomino-Merino R, Rosales JEE, Lagunas-Rodríguez Z, Arroyo-Cabrales J, Alarcón-D I, Carbot-Chanona G (2020) A fossil Bison antiquus from Puebla, Mexico and a new minimum age for the Valsequillo fossil area. J South Am Earth Sci 103:102766. https://doi.org/10.1016/j.jsames.2020.102766. (ISSN 0895-9811)

    Article  Google Scholar 

  • Doğan U, Yılmaz M (2011) Natural and induced sinkholes of the Obruk Plateau and Karapınar-Hotamış Plain, Turkey. J Asian Earth Sci 40:496–508. https://doi.org/10.1016/j.jseaes.2010.09.014

    Article  Google Scholar 

  • Flores-Márquez EL, Jiménez-Suárez G, Martínez-Serrano RG, Chávez RE, Pérez DS (2006) Study of geothermal water intrusion due to groundwater exploitation in the Puebla Valley aquifer system, Mexico. Hydrogeol J 14(7):1216–1230

    Article  Google Scholar 

  • Giampaolo V, Capozzoli L, Grimaldi S, Rizzo E (2016) Sinkhole risk assessment by ERT: the case study of Sirino Lake (Basilicata, Italy). Geomorphology 253:1–9

    Article  Google Scholar 

  • González S, Huddart D, Bennett MR, González-Huesca A (2006) Human footprints in Central Mexico older than 40,000 years. Quat Sci Rev 25(3–4):201–222. https://doi.org/10.1016/j.quascirev.2005.10.004. (ISSN 0277-3791)

    Article  Google Scholar 

  • Gutiérrez F, Zarroca M, Linares R, Roqué C, Carbonel D, Guerrero J, McCalpin JP, Comas X, Cooper AH (2018) Identifying the boundaries of sinkholes and subsidence areas via trenching and establishing setback distances. Eng Geol 233:255–268. https://doi.org/10.1016/j.enggeo.2017.12.015

    Article  Google Scholar 

  • Hernandez-Ramirez AG, Martinez-Tavera E, Rodriguez-Espinosa PF, Mendoza-Pérez JA, Tabla-Hernandez J, Escobedo-Urías DC, Jonathan MP, Sujitha SB (2019) Detection, provenance and associated environmental risks of water quality pollutants during anomaly events in River Atoyac, Central Mexico: a real-time monitoring approach. Sci Total Environ 669:1019–1032 (ISSN 0048-9697)

    Article  Google Scholar 

  • Ilse Kleinhans J, Van Rooy L (2016) Guidelines for sinkhole and subsidence rehabilitation based on generic geological models of a dolomite environment on the East Rand, South Africa. J Afr Earth Sc 117:86–101. https://doi.org/10.1016/j.jafrearsci.2016.01.001

    Article  Google Scholar 

  • INEGI (2020) S/F. Población: Numero de habitantes. Información de México para niños. https://cuentame.inegi.org.mx/monografias/informacion/pue/poblacion/

  • Intrieri E, Fontanelli K, Bardi F et al (2018) Definition of sinkhole triggers and susceptibility based on hydrogeomorphological analyses. Environ Earth Sci 77:4. https://doi.org/10.1007/s12665-017-7179-3

    Article  Google Scholar 

  • Kaufmann G (2014) Geophysical mapping of solution and collapse sinkholes. J Appl Geophys 111:271–288. https://doi.org/10.1016/j.jappgeo.2014.10.011

    Article  Google Scholar 

  • Kaufmann G, Romanov D (2016) Structure and evolution of collapse sinkholes: combined interpretation from physico-chemical modelling and geophysical field work. J Hydrol 540:688–698

    Article  Google Scholar 

  • Kaufmann G, Romanov D, Tippelt T, Vienken T, Werban U, Dietrich P, Mai F, Börner F (2018) Mapping and modelling of collapse sinkholes in soluble rock: the Münsterdorf site, northern Germany. J Appl Geophys 154:64–80. https://doi.org/10.1016/j.jappgeo.2018.04.021

    Article  Google Scholar 

  • Keylock C (2004) Reviewing the Hjulström curve. Geogr Rev 17(4):16–20. ISSN:0950-7035

    Google Scholar 

  • Kirkham MB (2005) Principles of soil and plant water relations. In: Principles of soil and plant water relations. https://doi.org/10.1016/B978-0-12-409751-3.X5000-2

  • Linares R, Roqué C, Gutiérrez F, Zarroca M, Carbonel D, Bach J, Fabregat I (2017) The impact of droughts and climate change on sinkhole occurrence. A case study from the evaporite karst of the Fluvia Valley, NE Spain. Sci Total Environ 579:345–358. https://doi.org/10.1016/j.scitotenv.2016.11.091. (ISSN 0048-9697)

    Article  Google Scholar 

  • Llerena C (2003) Servicios ambientales de las cuencas y producción de agua. Conceptos, valoración, experiencias y sus posibilidades de aplicación en el Perú. Foro Regional sobre sistemas de pago por servicios ambientales. Arequipa

  • Madakka M, Jayaraju N, Shirisha J (2021) An integrated analysis of sinkholes in Kadapa region, Andra Pradesh, India: implication to pedology. Microchem J. https://doi.org/10.1016/j.microc.2021.106588. (ISSN 0026-265X)

    Article  Google Scholar 

  • Morales MM, Sánchez ERS, Hoyos SEG, Esteller M (2015) Vicenta Simulación de diferentes alternativas de gestión de los recursos hídricos del acuífero de Puebla-Atoyac Ingeniería, vol 19(1). Universidad Autónoma de Yucatán Mérida, México, pp 62–72

    Google Scholar 

  • Nam BH, Shamet R (2020) A preliminary sinkhole raveling chart. Eng Geol 268:105513. https://doi.org/10.1016/j.enggeo.2020.105513 (ISSN 0013-7952)

    Article  Google Scholar 

  • Panno SV, Luman DE (2018) Characterization of cover-collapse sinkhole morphology on a groundwater basin-wide scale using lidar elevation data: a new conceptual model for sinkhole evolution. Geomorphology 318:1–17. https://doi.org/10.1016/j.geomorph.2018.05.013. (ISSN 0169-555X)

    Article  Google Scholar 

  • Pazzi V, Di Filippo M, Di Nezza M, Carlà T, Bardi F, Marini F, Fontanelli K, Intrieri E, Fanti R (2018) Integrated geophysical survey in a sinkhole-prone area: microgravity, electrical resistivity tomographies, and seismic noise measurements to delimit its extensión. Eng Geol 243:282–293. https://doi.org/10.1016/j.enggeo.2018.07.016

    Article  Google Scholar 

  • Rodriguez-Espinosa PF, Jonathan MP, Morales-García SS, Villegas LEC, Martinez-Tavera E, Muñoz-Sevilla NP, Cardona MA (2015) Metal enrichment of soils following the April 2012–2013 eruptive activity of the Popocatépetl volcano, Puebla, Mexico. Environ Monit Assess J 187(11):1–7. https://doi.org/10.1007/s10661-015-4938-z

    Article  Google Scholar 

  • Rodriguez-Espinosa PF, Sabarathinam C, Ochoa-Guerrero KM, Martínez-Tavera E, Panda B (2020) Geochemical evolution and Boron sources of the groundwater affected by urban and volcanic activities of Puebla Valley, south central Mexico. J Hydrol 584:124613. https://doi.org/10.1016/j.jhydrol.2020.124613. (ISSN 0022-1694)

    Article  Google Scholar 

  • Rodríguez-Espinosa PF, Shruti VC, Jonathan MP, Martinez-Tavera E (2018) Metal concentrations and their potential ecological risks in fluvial sediments of Atoyac River basin, Central Mexico: volcanic and anthropogenic influences. Ecotoxicol Environ Saf 148:1020–1033. https://doi.org/10.1016/j.ecoenv.2017.11.068 (ISSN 0147-6513)

    Article  Google Scholar 

  • Romanov D, Kaufmann G, Al-Halbouni D (2020) Basic processes and factors determining the evolution of collapse sinkholes—a sensitivity study. Eng Geol 270:105589. https://doi.org/10.1016/j.enggeo.2020.105589

    Article  Google Scholar 

  • Salcedo Sánchez ER, Hoyos SEG, Esteller MV, Morales MM, Astudillo AO (2017) Hydrogeochemistry and water-rock interactions in the urban area of Puebla Valley aquifer (Mexico). J Geochem Explor 181:219–235. https://doi.org/10.1016/j.gexplo.2017.07.016. (ISSN 0375-6742)

    Article  Google Scholar 

  • Samyn K, Mathieu F, Bitri A, Nachbaur A, Closset L (2014a) Integrated geophysical approach in assessing karst presence and sinkhole susceptibility along flood-protection dykes of the Loire River, Orléans, France. Eng Geol 183:170–184. https://doi.org/10.1016/j.enggeo.2014.10.013

    Article  Google Scholar 

  • Samyn K, Mathieu F, Bitri A, Nachbaur A, Closset L (2014b) Integrated geophysical approach in assessing karst presence and sinkhole susceptibility along flood-protection dykes of the Loire River, Orléans, France. Eng Geol 183:170–184. https://doi.org/10.1016/j.enggeo.2014.10.013

    Article  Google Scholar 

  • Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (1992) Sinopsis Geohidrológica del Estado de Puebla. Agencia ISBN México. ISBN 978-968-800-353-4

  • Sevil J, Gutiérrez F, Zarroca M, Desir G, Carbonel D, Guerrero J, Linares R, Roqué C, Fabregat I (2017) Sinkhole investigation in an urban area by trenching in combination with GPR, ERT and high-precision leveling. Mantled evaporite karst of Zaragoza city, NE Spain. Eng Geol 231:9–20. https://doi.org/10.1016/j.enggeo.2017.10.009. (ISSN 0013-7952)

    Article  Google Scholar 

  • Shruti VC, Jonathan MP, Rodríguez-Espinosa PF, Nagarajan R, Escobedo-Urias DC, Morales-García SS, Martínez-Tavera E (2017) Geochemical characteristics of stream sediments from an urban-volcanic zone, Central Mexico: natural and man-made inputs. Geochemistry 77(2):303–321. https://doi.org/10.1016/j.chemer.2017.04.005. (ISSN 0009-2819)

    Article  Google Scholar 

  • Stevens RE, Metcalfe SE, Leng MJ, Lamb AL, Sloane HJ, Naranjo E, González S (2012) Reconstruction of late Pleistocene climate in the Valsequillo Basin (Central Mexico) through isotopic analysis of terrestrial and freshwater snails. Palaeogeogr Palaeoclimatol Palaeoecol 319–320:16–27. https://doi.org/10.1016/j.palaeo.2011.12.012. (ISSN 0031-0182)

    Article  Google Scholar 

  • Urrutia-Fucugauchi J, Trigo-Huesca A, Téllez-García E, Pérez-Cruz L, Méndez-Rivero F (2014) Volcano-sedimentary stratigraphy in the Valsequillo Basin, Central Mexico inferred from electrical resistivity soundings. Geofísica Internacional 53(1):87–94. https://doi.org/10.1016/S0016-7169(14)71492-8. (ISSN 0016-7169)

    Article  Google Scholar 

  • Verdet C, Sirieix C, Marache A, Riss J, Portais J-C (2020) Detection of undercover karst features by geophysics (ERT) Lascaux cave Hill. Geomorphology 360:107177. https://doi.org/10.1016/j.geomorph.2020.107177

    Article  Google Scholar 

  • Wang J, Li P, Ma Y, Li T (2018) Influence of irrigation method on the infiltration in loess: field study in the Loess Plateau. Desalination Water Treat. https://doi.org/10.5004/dwt.2018.22329

    Article  Google Scholar 

  • Xiao X, Gutiérrez F, Guerrero J (2020) The impact of groundwater drawdown and vacuum pressure on sinkhole development. Physical laboratory models. Eng Geol 279:105894. https://doi.org/10.1016/j.enggeo.2020.105894. (ISSN 0013-7952)

    Article  Google Scholar 

  • Youssef AM, El-Kaliouby HM, Zabramawi YA (2012) Integration of remote sensing and electrical resistivity methods in sinkhole investigation in Saudi Arabia. J Appl Geophys 87:28–39. https://doi.org/10.1016/j.jappgeo.2012.09.001

    Article  Google Scholar 

  • Youssef AH, Al-Harbi HM, Gutiérrez F, Zabramwi YA, Bulkhi AB, Zahrani SA, Bahamil AM, Zahrani AJ, Otaibi ZA, El-Haddad BA (2016a) Natural and human-induced sinkhole hazards in Saudi Arabia: distribution, investigation, causes, and impacts. Hydrogeol J 24:625–644

    Article  Google Scholar 

  • Youssef AM, Al-Harbi HM, Gutiérrez F et al (2016b) Natural and human-induced sinkhole hazards in Saudi Arabia: distribution, investigation, causes and impacts. Hydrogeol J 24:625–644. https://doi.org/10.1007/s10040-015-1336-0

    Article  Google Scholar 

  • Youssef AM, Zabramwi YA, Gutiérrez F, Bahamil AM, Otaibi ZA, Zahrani AJ (2020) Geophysical investigation (ERT) of a sinkhole induced by uncontrolled groundwater withdrawl, Al Jouf Region, Saudi Arabia. J Arid Environ 177:Article 10413

    Article  Google Scholar 

  • Zini L, Calligaris C, Forte E, Petronio L, Zavagno E, Boccali C, Cucchi F (2015) A multidisciplinary approach in sinkhole analysis: the Quinis village case study (NE-Italy). Eng Geol 197:132–144. https://doi.org/10.1016/j.enggeo.2015.07.004. (ISSN 0013-7952)

    Article  Google Scholar 

  • Zisman ED (2001) A standard method for sinkhole detection in the Tampa, Florida, area. Environ Eng Geosci 7(1):31–50. https://doi.org/10.2113/gseegeosci.7.1.31

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial assistance awarded by the Secretary of Environment, Puebla (Secretaría de Medio Ambiente, Sustentabilidad y Ordenamiento Territorial de Puebla, Gobierno del Estado de Puebla). Also, the authors wish to express their gratitude to Ing. Honorio Guevara Brunel of the Servicios de Ingeniería y Control de Calidad, Puebla, México for his specialize assistance. PFRE wish to express his thanks to Lic. Gustavo Lima Carro Director de Prevención de Desastres de la Coordinación General de Protección del Estado de Puebla, México, the Sistema Nacional de Investigadores (SNI), CONACyT, IPN SIP20221849, SIP 20231805 and COFAA, EDI, México. KMOG and JJCG wish to express their thanks to MCEAS, DCEAS, (PNPC CONACyT), CIIEMAD-IPN. SMV, MGHS and JCSMG thanks IPN-ESIA for all the support.

Funding

This project was funding by the Secretaria de Medio Ambiente, Desarrollo Sustentable y Ordenamiento Territorial, Puebla, México.

Author information

Authors and Affiliations

Authors

Contributions

Pedro Francisco Rodríguez Espinosa- Research and article structure design, data interpretation, fieldwork. Karen Mineli Ochoa Guerrero – Write the Original draft, data interpretation, figures design. Saúl Milán Valdés – Groundwater analysis, model, conclusion and data analysis. Juan Carlos San Miguel Gutiérrez - Geophysics fieldwork and interpretation results. Moisés Gerardo Hernández Silva - Geophysics fieldwork and interpretation results. José Jorge Caracheo González- Data interpretation and void calculation. Ángel Refugio Terán Cuevas- Geophysisc interpretation results. Santiago Creuheras Díaz – Economical and Social analysis.

Corresponding author

Correspondence to P. F. Rodriguez-Espinosa.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1.

Supplementary methods 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Espinosa, P.F., Ochoa-Guerrero, K.M., Milan-Valdes, S. et al. Impacts on groundwater-related anthropogenic activities on the development of sinkhole hazards: a case study from Central Mexico. Environ Earth Sci 82, 358 (2023). https://doi.org/10.1007/s12665-023-11037-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-023-11037-4

Keywords

Navigation