Abstract
In drylands, groundwater is often the only perennial source of freshwater to sustain domestic water supplies and irrigation. Knowledge of the pathways and dynamics of groundwater discharge and recharge is, therefore, essential to inform sustainable and rational management of limited water resources. The lower valley of the Dallol Maouri in Niger represents a large fossil tributary (i.e. paleochannel) of the River Niger and drains groundwater regionally from the Iullemmeden Basin through coarse-grained Quaternary sediments. The objective of this paper is to quantify groundwater discharge within this paleochannel using piezometry and near-surface geophysics (TDEM: Time Domain Electromagnetics, MRS: Magnetic Resonance Sounding). TDEM and MRS experiments, conducted at 21 sites along 3 transects, show the thickness of the saturated Quaternary alluvium varies from 7 to 19 m with estimated effective porosities ranging from 18 to 38% and a hydraulic conductivity of 0.6–3 × 10–3 m/s. Dense piezometric surveys along drainage channel reveal hydraulic gradients of 0.2–0.3‰ that generate Darcy fluxes of 1000–2000 m3/day (dry season, i.e. minimum value). Paleochannel discharge, which currently provides baseflow to the River Niger, is the focus of local demand to increase access to water for drinking, livestock watering, and supplementary irrigation.










Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Availability of data and materials
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
References
Abdou Ali I (2018) Caractérisation des réservoirs aquifères multicouches du bassin des Iullemmeden dans la région de Dosso (Sud-Ouest du Niger) : Apport de la télédétection, du SIG, de la géophysique et de l’hydrogéochimie. Thèse de doctorat de l’Université Abdou Moumouni de Niamey, p 310
ABN (2011) Annexe°1 à la charte de l'eau du bassin du Niger relative à la protection de l'environnement. Rapport de réunion des gouvernements de pays membres de l'Autorité du Bassin du Niger (ABN), p 74
ABN (2019) Annexe°2 à la charte de l'eau du bassin du Niger relative au règlement d'eau pour la gestion coordonnée des barrages constituants. Rapport de réunion des gouvernements de pays membres de l'Autorité du Bassin du Niger (ABN), p 17
Armand C (1987) Actualisation de l’Atlas des eaux souterraines du Niger, Rapport BRGM 87 NER 108 EAU ; p 148
Berthou S, Kendon EJ, Rowell DP, Roberts MJ, Tucker S, Stratton R (2019) Larger Future intensification of rainfall in the West African Sahel in a convection-permitting model. Geophys Res Lett 46(22):13299–13307. https://doi.org/10.1029/2019gl83544
BGR/ABN (2019) Geological map of the transbondary region Benin, Niger and Nigeria. Sedimentary basins: Southern Iullemmeden, Kandi and Sokoto. Technical rapport N°5, p 148
Boucher M, Favreau G, Vouillamoz JM, Nazoumou Y, Legchenko A (2009a) Estimating specific yield and transmissivity with magnetic resonance sounding in an unconfined sandstone aquifer (Niger). Hydrogeol J 17(7):1805–1815. https://doi.org/10.1007/s10040-009-0447-x
Boucher M, Favreau G, Descloitres M, Vouillamoz JM, Massuel S, Nazoumou Y, Cappelaere B, Legchenko A (2009b) Contribution of geophysical surveys to groundwater modelling of a porous aquifer in semiarid Niger: an overview. CR Geosci 341:800–809. https://doi.org/10.1016/j.crte.2009.07.008
Boucher M, Favreau G, Nazoumou Y, Cappelaere B, Massuel S, Legchenko A (2012) Constraining groundwater modeling with magnetic resonance soundings. Ground Water 50(5):775–784. https://doi.org/10.1111/j.1745-6584.2011.00891.x
CEIPI (2011) Projets et Programmes de développement de l’irrigation au Niger (1960–2010): Eléments pour un bilan, p 115
CGG (1968) Projet de mise en valeur du Dallol Maouri : Prospection géophysique par sondages électriques. Rapport final, p 22
Chalikakis K, Nielsen MR, Legchenko A (2008) MRS applicability for a study of glacial sedimentary aquifers in Central Jutland. Den J Appl Geophys 66(3–4):176–187. https://doi.org/10.1016/j.jappgeo.2007.11.005
Chalikakis K, Ryom Nielsen M, Legchenko A, Feldberg Hagensen T (2009) Investigation of sedimentary aquifers in Danemark using the magnetic resonance sounding method (MRS). C r Geosci 341(2009):918–927. https://doi.org/10.1016/j.crte.2009.07.007
Cochand J (2007) La petite irrigationprivée dans le sud Niger: potentiels et contraintes d'une dynamique locale, Le cas du sud du département de Gaya, mémoire de maîtrise de l'Université de Lausanne, p 149
Conseil de l'Entente (1998) Campagne de réalisation des 1000 forages au Niger: Logs lithologiques des forages.
Cuthbert MO, Acworth RI, Andersen MS, Larsen JR, McCallum AM, Rau GC, Tellam JH (2016) Understanding and quantifying focused, indirect groundwater recharge from ephemeral streams using water table fluctuations. Water Resour Res 52:827–840. https://doi.org/10.1002/201SWR017503
Cuthbert MO, Taylor RG, Favreau G et al (2019) Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572:230–234. https://doi.org/10.1038/s41586-019-1441-7
Daddy Gaoh A, Dassargues A (1995) Exploitation de la nappe alluviale du Dallol Maouri pour des cultures irriguées au Niger. Sécheresse n°3, vol., 6, Septembre 95; p7
Dambo L (2007) Usages de l ’ eau à Gaya ( Niger ) : entre fortes potentialités et contraintes majeures. Thèse de doctorat à l’université de Lausanne ; p 424p
Davies J, Barchiesi S, Ogali CJ, Welling R, Dalton J, Laban P (2016) Water in drylands: Adapting to scarcity through integrated management. IUCN, Gland. https://doi.org/10.2305/IUCN.CH.2016.06 (ISBN: 978-2-8317-1803-3)
DeGraaf IEM, Gleeson T, Rens van Beek LPH, Sutanudjaja EH, Bierkens MFP (2019) Environnemental flow limits to global groundwater pumping. 92 /NATURE/VOL574/3 OCTOBER 2019, https://doi.org/10.1038/s41586-019-1594-4
Descloitres M, Chalikakis K, Legchenko A, Moussa AM, Genthon P, Favreau G, Le Coz M, Boucher M, Oï M (2013) Investigation of groundwater resources in the Komadugu Yobe Valley (Lake Chad Basin, Niger) using MRS and TDEM methods. J Afr Earth Sc 87:71–85. https://doi.org/10.1016/j.jafrearsci.2013.07.006
Descloitres M (1998) Les sondages éléctromagnetiques en domaine temporel (TDEM): Application à la prospection d’aquifères sur les volcans de Fogo (cap vert) et du Piton de la Fournaise (la Réunion). Thèse de doctorat de l’Université Paris 6 ; p 256
D’Odorico P, Bhattachan A (2012) Review. Hydrologic variability in dryland regions: impacts on ecosystem dynamics food security. Philos Trans R Soc B 367:3145–3157. https://doi.org/10.1098/rstb.2012.0016
FAO (1970) Etude en vue de la mise en valeur des dallol Bosso et Maouri : Les eaux souterraines, rapport final, 98pp plus annexes
Favreau G (2000) Caractérisation et modélisation d’une nappe phréatique en hausse au Sahel : dynamique et géochimie de la dépression piézométrique naturelle du kori de Dantiandou (sud-ouest du Niger). Th. : Sci. de La Terre, Université Paris-Sud 11 : Orsay, 348
Favreau G, Nazoumou Y, Leblanc M, Guéro A, Goni IB (2012) Groundwater resources increase in the Iullemmeden Basin, West Africa. In: Climate change effects on groundwater resources: a global synthesis of findings and recommendations. editors: Holger Treidel, Jose Luis Martin-Bordes, Jason Gurdak. CRC Press/Balkema, ISBN: 978-0-415-68936-6 (hardback), ISBN: 978-0-203-12076-7
Favreau G, Leduc C (1998) Fluctuations à long terme de la nappe phréatique du Continental Terminal près de Niamey (Niger) entre 1956 à 1997. Water Ressources Variability in Africa during the XXJh CenJury (Proceedings of the Abidjan’98 Conference 253 held at Abidjan Côte d’Ivoire, Novembre 1998). IAHS Publ. no. 252, 1998
Favreau G, Leduc C, Schroeter P (2002) Reply to comment ‘Long-terme rise in the Sahelian water-table : the Continental Terminal in South-West Niger’ by Leduc, C., Favreau, G., Schroeter, P., 2001. J Hydrol 243:43–54 (Journal of Hydrology 255 (2002) 263-265. PII:S0022-1694(01)00517-0)
Favreau G, Cappelaere B, Massuel S, Leblanc M, Boucher M, Boulain N, Leduc C (2009) Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour Res 45:W00A16. https://doi.org/10.1029/2007WR006785
Favreau G, Nazoumou Y, Leblanc M, Guéro A, Goni IB (2012) Groundwater resources increase in the Iullemmeden Basin, West Africa. In: Climate change effects on groundwater resources: a global synthesis of findings and recommendations. CRC Press, pp 113–128
Fitterman DV, Stewart MT (1986) Transient electromagnetic sounding for groundwater. Geophysics 51(4):995–1005. https://doi.org/10.1190/1.1442158
Gavaud M (1977) Les grands traits de la pédogénèse au Niger Méridional. Paris, rapport ORSTOM N°76 ; p 106
Goldman M, Rabinovich B, Rabinovich M, Gilad D, Gev I, Schirov M (1994) Application of the integrated NMR-TDEM method in groundwater exploration in Israel. J Appl Geophys 31(1–4):27–52. https://doi.org/10.1016/0926-9851(94)90045-0
Goni IB, Taylor RG, Favreau G, Shamsudduha M, Nazoumou Y, Ngounou BN (2021) Groundwater recharge from heavy rainfall in the southwestern Lake Chad Basin: evidence from isotopic observations. Hydrol Sci J 66(8):1359–1371. https://doi.org/10.1080/02626667.2021.1937630
Greigert J (1957) Introduction à la connaissance hydrogéologique du bassin occidental du Niger. Rapport de fin de campagne 1955–1956 : troisième partie ; p 55
Greigert J (1966) Description des formations crétacées et tertiaires du bassin des Iullemmeden (Afrique Occidentale). Rapport BRGM, p 229
Greigert J (1978) Atlas des eaux souterraines du Niger: Etat des connaissances, Tome I. Rapport BRGM, p 438
Guéro A (2003) Etude des relations hydrauliques entre les différentes nappes du complexe sédimentaire de la bordure Sud-Ouest du bassin des Iullemmeden (Niger): approches géochimique et hydrodynamique. Thèse de doctorat à l’université de Paris Sud, p 257
INS (2012) Presentation des resultats preliminaires du quatrième récensensement général de la population et de l’habitat (RGP/H). Rapport 10
Kemgang Dongmo T, Boucher M, Mvondo VYE, Favreau G, Ngounou Ngatcha B, Yalo N, Goni IB, Legchenko A (2019) Contribution of time domain electromagnetic and magnetic resonance soundings to groundwater assessment at the margin of Lake Chad basin, Cameroon. J Appl Geophys 170:103840. https://doi.org/10.1016/j.jappgeo.2019.103840
Kenyon WE (1997) Petrophysical principles of applications of NMR logging. Log Analyst 38(2):21–40
Koch M, Missimer TM (2016) Water resources assessment and management in drylands. Water 8:239. https://doi.org/10.3390/w8060239
Leblanc MJ, Favreau G, Massuel S, Tweed SO, Loireau M, Cappelaere B (2008) Land clearance and hydrological changes in the Sahel: SW Niger. Glob Planet Change 61:135–150. https://doi.org/10.1016/j.gloplacha.2007.08.011
Leduc C, Favreau G, Schroeter P (2001) Long term rise in the Sahelian water-table: the Continental Terminal in South-West Niger. J Hydrol 243(2001):43–54
Legchenko A, Valla P (2002) A review of the basic principles for proton magnetic resonance sounding measurements. J Appl Geophys 50(1–2):3–19. https://doi.org/10.1016/S0926-9851(02)00127-1
Legchenko A, Baltassat JM, Beauce A, Bernard J (2002) Nuclear magnetic resonance as a geophysical tool for hydrogeologists. J Appl Geophys 50(1–2):21–46. https://doi.org/10.1016/S0926-9851(02)00128-3
Legchenko A, Baltassat JM, Bobachev A, Martin C, Robain H, Vouillamoz JM (2004) Magnetic resonance sounding applied to aquifer characterization. Groundwater 42:363–373
Legchenko A, Vouillamoz JM, Roy J (2011) Application of the magnetic resonance sounding method to the investigation of aquifers in the presence of magnetic materials. Geophysics. https://doi.org/10.1190/1.3494596
Legchenko A, Comte JC, Ofterdinger U, Vouillamoz JM, Lawson FMA, Walsh J (2017) Joint use of singular value decomposition and Monte-Carlo simulation for estimating uncertainty in surface NMR inversion. J Appl Geophys 144:28–36. https://doi.org/10.1016/j.jappgeo.2017.06.010
Lubczynski M, Roy J (2005) MRS contribution to hydrogeological system parametrization. Near Surf Geophys 3(3):131–139. https://doi.org/10.3997/1873-0604.2005009
MH/A (2017) Plan d’Action National de Gestion Intégrée des Ressources en Eau (PANGIRE). Rapport définitif, p 167
Nazoumou Y, Favreau G, Adamou MM, Maïnassara I (2016) La petite irrigation par les eaux souterraines, une solution durable contre la pauvreté et les crises alimentaires au Niger ? Cahiers Agric. https://doi.org/10.1051/cagri/2016005
Oladunjoye MA, Adefehinti A, Akinrinola R (2021) Integrated geophysical investigation for the characterisation of valley bottom soil at Ilora, Southwestern Nigeria. NRIAG J Astron Geophys 10(1):110–124. https://doi.org/10.1080/20909977.2020.1859668
Owen R, Dahlin T (2005) Alluvial aquifers at geological boundaries: geophysical investigations and groundwater resources. In: Bocanegra E, Hernandez M, Usunoff E (eds) Groundwater and human development. A A Balkema Publishers, pp 233–246
Plata JL, Rubio FM (2002) MRS experiments in a noisy area of a detrital aquifer in the south of Spain. J Appl Geophys 50(1–2):83–94. https://doi.org/10.1016/S0926-9851(02)00131-3
Plata JL, Rubio FM (2008) The use of MRS in the determination of hydraulic transmissivity: The case of alluvial aquifers. J Appl Geophys 66(3–4):128–139. https://doi.org/10.1016/j.jappgeo.2008.04.001
Reynolds JM (2011) An introduction to applied and environmental geophysics. 2nd ed. J. Wiley, p 712
Roy J, Lubczynski M (2003) The magnetic sounding technique and its use for groundwater investigation. Hydrogeol J 11:455–465. https://doi.org/10.1007/s10040-003-0254-8
Schirov M, Legchenko A, Creer G (1991) A new direct non-invasive groundwater detection technology for Australia. Explor Geophys 22(2):333–338. https://doi.org/10.1071/EG991333
Speed R, Killen A (2020) Hydrogeology of the Gillingarra Paleochannel. Resource management technical Report 413, Department of Primary Industries and Regional Development, Perth, p 74
Tarnavsky E, Mulligan M, Ouessar M, Faye A, Black E (2013) Dynamic hydrological modeling in dryland with TRMM based rainfall. Remote Sens 5:6691–6716. https://doi.org/10.3390/rs5126691
Taylor RG, Todd M, Kongola L, Nahozya E, Maurice L, Sanga H, MacDonald AM (2013a) Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nat Clim Change 3:374–378
Taylor RG, Scanlon B, Döll P, Rodell M et al (2013b) Ground water and climate change. Nat Clim Change 20:12. https://doi.org/10.1038/nclimate1744. (2012)
Taylor CM, Belušić D, Guichard F, Parker DJ, Vischel T, Bock O, Harris PP, Janicot S, Klein C, Panthou G (2017) Frequency of extreme Sahelian storms tripled since 1982 in satellite observations. Nature 544(7651):475–478. https://doi.org/10.1038/nature22069
Trushkin DV, Shushakov OA, Legchenko AV (1994) The potential of a noise-reducing antenna for surface NMR groundwater surveys in the earth’s magnetic field. Geophys Prospect 42(8):855–862. https://doi.org/10.1111/j.1365-2478.1994.tb00245.x
Vouillamoz JM, Chatenoux B, Mathieu F, Baltassat JM, Legchenko A (2007) Efficiency of joint use of MRS and VES to characterize coastal aquifer in Myanmar. J Appl Geophys 61(2):142–154. https://doi.org/10.1016/j.jappgeo.2006.06.003
Vouillamoz JM, Favreau G, Massuel S, Boucher M, Nazoumou Y, Legchenko A (2008) Contribution of magnetic resonance sounding to aquifer characterization and recharge estimate in semiarid Niger. J Appl Geophys 64(3–4):99–108. https://doi.org/10.1016/j.jappgeo.2007.12.006
Vouillamoz JM (2003) Les caractéristiques des aquifères par une méthode non invasive: Les sondages par resonance magnétique protonique. Thèse de doctorat de l’Université de Paris XI, 315p
Yao Y, Zheng C, Tian Y, Li X, Liu J (2017) Eco-hydrological effects associated with environmental flow management: a case study from the arid desert region of China. Ecohydrology 11:e1914. https://doi.org/10.1002/eco.1914. (2018)
Yao Y, Tian Y, Andrews C, Li X, Zheng Y, Zheng C (2018) Role of groundwater in the dryland ecohydrological system: a case study of the Heihe River Basin. J Geophys Res Atmos. https://doi.org/10.1029/2018JD028432
Zhao Y, Wei Y, Li S, Wu B (2016) Downstream ecosystem responses to middle reach regulation of river discharge in the Heihe River Basin, China. Hydrol Earth Syst Sci 20: 4469-4481. 10.5194/hess-20-4469-2016, www.hydrol-earth-syst-sci.net/20/4469/2016
Acknowledgements
This study was conducted with the support of grants under the GroFutures (www.grofutures.org) project (refs. NE/M008576/1, NE/M008932/1) from the UK government’s NERC-ESRC-DFID UPGro programme. We would also like to thank « l’Institut de Géosciences et de l’Environnement (IGE) » for lending us the NUMIS Lite to supplement our soundings. Thanks are also expressed to Mr. Issa Taweye (IRD Staff, Niamey) for his assistance in the field.
Author information
Authors and Affiliations
Contributions
All datasets used or analyzed in this study are available upon request from the lead and corresponding author,
Corresponding author
Ethics declarations
Conflict of interest
All authors certify that, they have no confict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Abdou Mahaman, R., Nazoumou, Y., Favreau, G. et al. Paleochannel groundwater discharge to the River Niger in the Iullemmeden Basin estimated by near- surface geophysics and piezometry. Environ Earth Sci 82, 202 (2023). https://doi.org/10.1007/s12665-023-10861-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12665-023-10861-y

