Skip to main content

Advertisement

Log in

Atmospheric exposure vs burying: influences on damage intensity of built-in kersantite in the monument of the Small Staircase (Belgrade, Serbia)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The effect of “buried stone” has been studied on the intensities of degradation processes present on the kersantite rock built into the monument Small Staircase. The investigations were conducted on sound rock from the quarry and damaged stone built-in the monument. While some staircase parts were underground for 90 years, most of the stone elements were exposed to different environmental conditions and anthropogenic influences. Detailed mapping of the current state of the monument was done to investigate the effect of the burial and monument’s complex geometry on the type of decay and varying of physical properties such as bulk and real density, total and open porosity, and water absorption. The main weathering types that occurred on kersantite elements were loss of stone material in the form of back weathering and relief followed by granular disintegration, flaking, and crust detachment. Damage indices were calculated on the bases of mapping results, too. Microscopic investigations, SEM–EDS and PXRD analyses showed that weathering of hydrothermally altered kersantite produced new secondary phases: vermiculite, increase of chlorite content, formation of secondary Fe oxides/hydroxide and salt deposits of gypsum, thenardite, Na-Ca sulphate and halite. In relation to sound kersantite, the decline in the value of physical properties of damaged stone was observed. Calculated values of damage indices reflected differences between separate parts of the Monument and enabled assessment of weathering rates according to the geometric position of the stone exposure to environmental influences, respectively significance of burial for stone conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used to support the study are available upon reasonable request by contact with the corresponding author.

References

  • Alessandrini G, Peruzzi R, Manganelli Del Fa C, Vannucci S, Tampone G, Cecchi R (1979) Investigation on the degradation of stones: the working effects on the Candoglia marble. In: Proceedings of 3rt Internationale Congress on the Deterioration and Preservation of Stones, Venice, pp 411–428

  • Amoroso GG, Fasina V (1983) Stone decay and conservation; atmospheric pollution, cleaning; and consolidation. In: Environmental Science, United States

  • Amoroso GG, Fasina V (1994) Stone decay and conservation: atmospheric pollution, cleaning, consolidation and protection. Elsevier, New York (1983). xix + 453pp. Review: C.A. Price, Studies in Conservation 29 No. 3 158–159

  • Arnold A, Zehnder K (1989) Salt weathering on monuments. In: Zezza F (ed) Proc. 1st Int. Symposium on the Conservation of Monuments in the Mediterranean Basin, Bari, pp 31–58

  • Banfield F, Eggleton AR (1988) Transmission electron microscope study of biotite weathering. Clay Clay Miner 36(1):47–60. https://doi.org/10.1346/CCMN.1988.0360107

    Article  Google Scholar 

  • Baptista-Neto JA, Smith BJ, McAllister JJ, Silva MAM, Castahteria FS (2006) Surface modification of a granite building stone in central Rio de Janeiro. Ann Braz Acad Sci 78:317–330. https://doi.org/10.1590/S0001-37652006000200011

    Article  Google Scholar 

  • Barry (2020) Heritage: the benefits of burying stone, https://www.stonespecialist.com/news/stone-heritage/heritage-benefits-burying-stone, Accessed 21 May 2022

  • Basset WA (1961) The geology of vermiculite occurrences. Clays Clay Miner 10:61–69

    Article  Google Scholar 

  • Basu S, Scott AO, Yasemin DA (2020) A geological perspective on climate change and building stone deterioration in London: implications for urban stone-built heritage research and management. Atmosphere 11(8):788. https://doi.org/10.3390/atmos11080788

    Article  Google Scholar 

  • Benavente D, Cultrone G, Gomez-Heras M (2008) The combined influence of mineralogical, hydric and thermal properties on the durability of porous building stones. Eur J Mineral 20:673–685

    Article  Google Scholar 

  • Bilbija N, Matović V (2009) Primenjena petrografija -svojstva i primene kamena, Gradjevinska knjiga d.o.o., p 417, ISBN 978-86-395-0591-2 (In Serbian)

  • Bisdom EBA, Stoops G, Delvigne J, Curmi P, Altemüller HJ (1982) Micromorphology of weathering biotite and its secondary products. Pedologie. 32:225–252

    Google Scholar 

  • Boettcher A (1966) Vermiculite, hydrobiotite, and biotite in the Rainy Creek igneous complex near Libby Montana. Clay Miner 6(04):283–296. https://doi.org/10.1180/claymin.1966.006.4.03

    Article  Google Scholar 

  • Brindley GW, Brown G (1980) X-ray diffraction procedures for clay mineral identification. In: Brindley GW, Brown G (eds) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, pp 305–356

    Chapter  Google Scholar 

  • Bromblet P, Bernabé E, Vergés-Belmin V (1996) Petrophysical investigation on the origin of scaling of a microgranular magmatic rock associated to granite in the monuments from Brittany (France)-Environmental Protection and Conservation of the European Cultural Heritage—Degradation and Conservation of Granitic Rocks, European Commission, pp 73–78

  • Çelik MY, Sert M (2021) An assessment of capillary water absorption changes related to the different salt solutions and their concentrations ratios in the Döğer tuff (Afyonkarahisar-Turkey) used as building stone of cultural heritages. J Build Eng. https://doi.org/10.1016/j.jobe.2020.102102

    Article  Google Scholar 

  • Charola AE, Bläuer C (2015) Salts in masonry: an overview of the problem. Restor Build Monum. https://doi.org/10.1515/rbm-2015-1005,Birkhäuser

    Article  Google Scholar 

  • Dubinska E, Wiewiora A (1988) Layer-silicates in the contact zone between granite and serpentinite, Jordanow, lower Silesia, Poland. Clay Miner 23:459–470

    Article  Google Scholar 

  • Duffy AP, Cooper TP, Perry SH (1993) Repointing mortars for conservation of a historic stone building in Trinity College, Dublin technical note. Mater Struct 26:302–306

    Article  Google Scholar 

  • Erić S (2019) Applied mineralogy. In: Gligoric Z (ed) University of Belgrade, Faculty of Mining and geology, Belgrade, p 180

  • European Committee for Standardization EN 12407 (2019) Natural stone test methods—petrographic examination. European Standard emitted by CEN, technical body CEN/TC 246-Natural stones

  • European Committee for Standardization EN 13755 (2008) Natural stone test methods-determination of water absorption at atmospheric pressure. European Standard emitted by CEN, technical body CEN/TC 246-Natural stones

  • European Committee for Standardization EN 1936 (2006) Natural stone test methods-determination of real density and apparent density, and of total and open porosity. European Standard emitted by CEN, technical body CEN/TC 246-Natural stones

  • Fang Q, Hong H, Algeo T, Huang X, Sun A, Churchman G, Chorover J, Chen S, Liu Y (2019) Microtopography-mediated hydrologic environment controls elemental migration and mineral weathering in subalpine surface soils of subtropical monsoonal China. Geoderma 344:82–98. https://doi.org/10.1016/j.geoderma.2019.03.008

    Article  Google Scholar 

  • Fanning DS, Keramidas VZ, El-Desoky MA (1989) Micas. In: Dixon JB, Weed SB (eds) Minerals in soil environment, 2nd edn. Soil Science Society of America, Madison, pp 551–634

    Google Scholar 

  • Fitzner B, Heinrichs K, Kownatzki R (1992) Classification and mapping of weathering forms. In: Proceedings of the seventh international congress on deterioration and conservation of stone, Laboratorio Nacional de Engenharia Civil, Lisbon, 15–18 October 1992, pp 1109–1116

  • Fitzner B, Heinrichs K, La Bouchardiere D (2002a) Damage index for stone monuments. In: Galan E, Zezza F (eds) Protection and conservation of the cultural heritage of the mediterranean cities, proceedings of the 5th international symposium on the conservation of monuments in the Mediterranean Basin, Sevilla, Spain

  • Fitzner B, Heinrichs K, La Bouchardiere D (2002b) Limestone weathering on historical monuments in Cairo, Egypt. Geological Society, Special Publication, London, pp 217–239

  • Flatt RJ (2002) Salt damage in porous materials: how high supersaturations are generated. J Cryst Growth 242:435–454. https://doi.org/10.1016/S0022-0248(02)01429-X

    Article  Google Scholar 

  • Flatt RJ, Scherer GW (2002) Hydration and crystallization pressure of sodium sulfate: a critical review. In: Vandiver PB, Gordway M, Mass JL (Eds) Proceedings of Materials Research Society, 712, Materials Issues in Art and Archeology VI, Mater Res Soc, Warrendale, pp 29–34

  • Fookes PG, Lee EM (2007) Climate variation: a simple geological perspective. Geol Today 23:66–73. https://doi.org/10.1111/j.1365-2451.2007.00603.x

    Article  Google Scholar 

  • Franzen C, Fischer T (2022) Removal of iron crusts from sandstone sculptures in a fountain. Environ Earth Sci 81:216. https://doi.org/10.1007/s12665-022-10302-2

    Article  Google Scholar 

  • Frascá M, Yamamoto J (2004) Accelerated weathering of granite building stone by sulfur dioxide exposure. In: Conference: 10th International congress on deterioration and conservation of stone at: Stockholm, Sweden

  • Freire-Lista DM, Fort R (2016) Causes of scaling on bush-hammered heritage ashlars: a case study—Plaza Mayor of Madrid (Spain). Environ Earth Sci 75:932. https://doi.org/10.1007/s12665-016-5688-0

    Article  Google Scholar 

  • Freire-Lista DM, Fort R, Varas-Muriel MJ (2015) Freeze-thaw fracturing in building granites. Cold Reg Sci Technol 113:40–51. https://doi.org/10.1016/j.coldregions.2015.01.008

    Article  Google Scholar 

  • Funatsu T, Seto M, Shimada H, Matsui K, Kuruppu M (2004) Combined effects of increasing temperature and confining pressure on the fracture toughness of clay bearing rocks. Int J Rock Mech Min Sci 41(6):927–938

    Article  Google Scholar 

  • García-del-Cura MA, Benavente D, Bernabéu A, Martínez-Martínez J (2008) The effect of surface finishes on outdoor granite and limestone pavers. Mater Constr 58(289–290):65–79

    Google Scholar 

  • Garcia-Talegon J, Vicente M, Ballesteros E (1999) Decay of granite monuments due to salt crystallization in a non-polluted urban environment. Mater Constr 49:17

    Google Scholar 

  • Gates-Rector S, Blanton T (2019) The powder diffraction file: a quality materials characterization database. Powder Diffr 34(4):352–360. https://doi.org/10.1017/S0885715619000812

    Article  Google Scholar 

  • Gburčik V, Tošović S et al. (2002) Ekološki atlas Beograda (Environmental atlas of Belgrade), Gradski zavod za zaštitu zdravlja i Direkcija za građevinsko zemljište i izgradnju Beograda, Beograd (in Serbian)

  • Graue B, Siegesmund S, Middendorf B (2011) Quality assessment of replacement stones for the Cologne Cathedral: mineralogical and petrophysical requirements. Environ Earth Sci 63:1799–1822

    Article  Google Scholar 

  • Graue B, Siegesmund S, Oyhantcabal P, Naumann R, Licha T, Simon K (2013) The effect of air pollution on stone decay: the decay of the Drachenfels trachyte in industrial, urban, and rural environments—a case study of the Cologne Altenberg and Xanten cathedrals. Environ Earth Sci. https://doi.org/10.1007/s12665-012-2161-6

    Article  Google Scholar 

  • Harraz HZ, Hamdy MM (2010) Interstratified vermiculite–mica in the gneiss–metapelite–serpentinite rocks at Hafafit area, Southern Eastern Desert, Egypt: from metasomatism to weathering. J Afr Earth Sc 58:305–320

    Article  Google Scholar 

  • Henriques AME, Tello JSMN (2006) Manual da pedra natural para a arquitetura, Direcção Geral da Geologia e Energia, ISBN 989-95163-0-9

  • Hillier S, Marwa E, Rice CM (2013) On the mechanism of exfoliation of ‘Vermiculite.’ Clay Miner 48(4):563–582. https://doi.org/10.1180/claymin.2013.048.4.01

    Article  Google Scholar 

  • Hoda SN, Hood WC (1972) Laboratory alteration of trioctahedral micas. Clays Clay Miner 20:343–358

    Article  Google Scholar 

  • Hofmann A, Siegesmund S (2007) The dimension stone potential of Thailand—overview and granite site investigations. Geol Soc Lond Spec Publ 271(1):43–54

    Article  Google Scholar 

  • Hunt BJ, Grossi CM (2016) Assessing the impact of natural stone burial upon performance for potential conservation purposes. In: 13th Intnl. Congress on the Deterioration and Conservation of Stone, vol. 2, pp 817–824

  • ICOMOS-ISCS (2008) Illustrated glossary on stone deterioration patterns. Monuments and sites XV. Vergès-Belmin V (eds)—International Scientific Committee for Stone. English version. ICOMOS France

  • Kahraman S, Gunaydin O, Fener M (2005) The effect of porosity on the relation between uniaxial compressive strength and point load index. Int J Rock Mech Min Sci 42:584–589. https://doi.org/10.1016/j.ijrmms.2005.02.004

    Article  Google Scholar 

  • Karkanas P (2010) Preservation of anthropogenic materials under different geochemical processes: a mineralogical approach. Quat Int 214(1–2):63–69. https://doi.org/10.1016/j.quaint.2009.10.017. (ISSN 1040-6182)

    Article  Google Scholar 

  • Kibblewhite M, Tóth G, Hermann T (2015) Predicting the preservation of cultural artefacts and buried materials in soil. Sci Total Environ 529:249–263. https://doi.org/10.1016/j.scitotenv.2015.04.036. (ISSN 0048-9697)

    Article  Google Scholar 

  • Kossmat F (1924) Geologie der zentralen Balkanhalbinsel: Mit einer Übersicht des dinarischen Gebirgsbaus (No. 12). Gebr. Borntraeger, Berlin

  • López-Arce P, Varas-Muriel M, Fernández-Revuelta B, Alvarez de Buergo M, Fort R, Perez-Soba C (2010) Artificial weathering of Spanish granites subjected to salt crystallization tests: surface roughness quantification. Fuel Energy Abstr 83:170–185. https://doi.org/10.1016/j.catena.2010.08.009

    Article  Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sorensen H, Woolley AR (2002) Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks/Le Maitre RW (editor) et al. (R. W. (Roger W. Le Maitre, Ed.; Second edition.). Cambridge University Press, pp 97. ISBN-13 978-0-511-06864-5 eBook

  • Matias MS, Alves CAS (2001) In: Lourenco PB, Roca P (Eds.), Decay patterns of granite stones in Braga monuments (NW Portugal), Historical Constructions, Guimaraes

  • Matović V, Vaskovic N, Erić S, Srećković-Batoćanin D (2010) Interaction between binding materials—the cause of damage to gabbro stone on the monument to the unknown soldier (Serbia). Environ Earth Sci 60:1153–1164. https://doi.org/10.1007/s12665-009-0257-4

    Article  Google Scholar 

  • Matović V, Erić S, Srećković-Batoćanin D, Colomban P, Kremenović A (2014) The influence of building materials on salt formation in rural environments. Environ Earth Sci 72:1939–1951. https://doi.org/10.1007/s12665-014-3101-4

    Article  Google Scholar 

  • Momeni A, Khanlari G, Heidari M, Bagheri R, Bazvand E (2015) Assessment of physical weathering effects on granitic ancient monuments, Hamedan, Iran. Environ Earth Sci. https://doi.org/10.1007/s12665-015-4536-y

    Article  Google Scholar 

  • Moon H, Song Y, Lee SY (1994) Supergene vermiculitization of phlogopite and biotite in ultramafic and mafic rocks Central Korea. Clays Clay Miner 42(3):259–268

    Article  Google Scholar 

  • Moore DM, Reynolds RC (1997) X-ray diffraction and identification and analysis of clay minerals, 2nd edn. Oxford University Press, New York (9780195087130)

    Google Scholar 

  • Morales Demarco M, Oyhantçabal P, Stein KJ et al (2011) Black dimensional stones: geology, technical properties and deposit characterization of the dolerites from Uruguay. Environ Earth Sci 63:1879–1909. https://doi.org/10.1007/s12665-010-0827-5

    Article  Google Scholar 

  • Mosch S (2009) Optimierung der exploration, Gewinnung und Materialcharakterisierung von Naturwerksteinen. http://webdoc.sub.gwdg.de/diss/2009/mosch/mosch.pdf

  • Mosch S, Siegesmund S (2007) Statistische Bewertung gesteintechnischer Kenndaten von Natursteinen. Z Dtsch Ges Geowiss 158(4):821–868

    Google Scholar 

  • Murakami T, Utsunomiya S, Yokoyama T, Kasama T (2003) Biotite dissolution processes and mechanisms in the laboratory and in nature: early stage weathering environment and vermiculitization. Am Miner 88(2–3):377–386. https://doi.org/10.2138/am-2003-2-314

    Article  Google Scholar 

  • Novaković, N, Matović V, Franković M (2015) Stanje kersantita ugrađenog u fasade zgrade Narodnog muzeja u Beogradu, Zbornik radova sa Devetog naučno-stručnog Međunarodnog savetovanja Ocena stanja, održavanje i sanacija građevinskih objekata i naselja. Savez građevinskih inženjera Srbije, Zlatibor, 411–418 (In Serbian)

  • Novaković N, Franković M, Matović V, Šarić K, Erić S (2016) Decay products of the kersantite building stone in the monument of the Small Staircase at the Kalemegdan Park (Belgrade, Serbia). In: Proceedings of the 13th International Congress on the Deterioration and Conservation of Stone 1 pp.125–132

  • Orti F, Gündogan I, Helvaci C (2002) Sodium sulphate deposits of Neogene age: the Kirmir Formation, Beypazari Basin, Turkey. Sediment Geol 146:305–333

    Article  Google Scholar 

  • Patil S, Kasthurba AK (2020) Weathering of stone monuments: damage assessment of basalt and laterite. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.10.022

    Article  Google Scholar 

  • Patil SM, Kasthurba AK, Patil MV (2021) Characterization and assessment of stone deterioration on Heritage Buildings. Case Stud Constr Mater 15:e00696. https://doi.org/10.1016/j.cscm.2021.e00696

    Article  Google Scholar 

  • Pavlović M, Eremija M, Stevanović P (1977) Gružanski basen. Geologija Srbije II-3, Stratigrafija, Kenozoik. Zavod za regionalnu geologiju i paleontologiju, Rudarsko-geološki fakultet, Beograd (in Serbian)

  • Perry SH, Duffy AP (1997) The short-term effects of mortar joints on salt movement in stone. Atmos Environ 31(9):1297–1305

    Article  Google Scholar 

  • Prelević D, Wehrheim S, Reutter M, Romer R, Boev B, Božović M, Van den Bogaard P, Cvetković V, Schmid S (2017) The Late Cretaceous Klepa basalts in Macedonia (FYROM)—constraints on the final stage of Tethys closure in the Balkans. Terra Nova. https://doi.org/10.1111/ter.12264

    Article  Google Scholar 

  • Rama M, Eklund O, Fröjdö S, Smått J-H, Lastusaari M, Laiho T (2020) Characterization of altered mica from Sokli Northern Finland. Clays Clay Miner 67(5):428–438. https://doi.org/10.1007/s42860-019-00041-0

    Article  Google Scholar 

  • Ren M, Wang W, Huang Z, Li S, Wu Q, Yu H, Yuan G, Sargent P (2022) Effect of alteration on the geochemistry and mechanical properties of granite from Pingjiang, Hunan Province China. Environ Earth Sci 81(3):1–15. https://doi.org/10.1007/s12665-022-10197-z

    Article  Google Scholar 

  • Rigaku (2007) PDXL 2: integrated powder X-ray diffraction software (version 2.8.4.0). Rigaku Corporation, Tokyo, Japan. https://www.rigaku.com/support/software/pdxl

  • Ross GJ, Rich CI (1973) The Effect of particle thickness on potassium release from phlogopite. Clays Clay Miner 21:77–82

    Article  Google Scholar 

  • Ross GJ, Wang C, Orkan AI, Rees HW (1982) Weathering of chlorite and mica in a New Brunswick podzol developed on till derived from chlorite–mica schist. Geoderma 27:255–267

    Article  Google Scholar 

  • Sanjurjo J, Alves C, Vidal-Romani JR (2016) Assessing the weathering of granitic stones on historical urban buildings by geochemical indices. Earth Sci Res J 20:F1–F13. https://doi.org/10.15446/esrj.v20n2.49560

    Article  Google Scholar 

  • Satterthwaite D (2008) Cities’ contribution to global warming: notes on the allocation of greenhouse gas emissions. Environ Urban 20(2):539–549. https://doi.org/10.1177/0956247808096127

    Article  Google Scholar 

  • Scherer GW, Jiménez González I (2005) Characterization of swelling in clay-bearing stone in stone decay and conservation, SP-390, ed. A.V. Turkington, Geological Soc. Am, pp 51–61

  • Schiavon N (2007) Kaolinisation of granite in an urban environment. Environ Geol 52:399–407. https://doi.org/10.1007/s00254-006-0473-0

    Article  Google Scholar 

  • Schiavon N, Chiavari G, Schiavon G, Fabbri D (1995) Nature and decay effects of urban soiling on granitic building stones. Sci Total Environ 167(1–3):87–101. https://doi.org/10.1016/0048-9697(95)04572-I. (ISSN 0048-9697)

    Article  Google Scholar 

  • Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Ustaszewski K (2008) The Alpine–Carpathian–Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101(1):139–183

    Article  Google Scholar 

  • Schoeman JJ (1989) Mica and vermiculite in South Africa. J South Afr Inst Mineral Metall 89:1–12

    Google Scholar 

  • Schroeder PA, Melear ND, West LT, Hamilton DA (2000) Meta-gabbro weathering in the Georgia Piedmont, USA: implications for global silicate weathering rates. Chem Geol 163:235–245

    Article  Google Scholar 

  • Scott AD (1968) Effect of particle size on interlayer potassium exchange in micas. In: Proceedings of Ninth Transaction International Congress Soil Science, vol. 2, Adelaide, pp 649–669

  • Siegesmund S, Brimblecombe P (2013) Environmental earth sciences: topical issue: urban use of rocks-The Bernhard-Smith - Volume Guest Editors: Siegfried Siegesmund & Peter Brimblecombe

  • Siegesmund S, Snethlage R (2014) Stone in architecture-properties, durability. Springer, Heidelberg New York, Dordrecht London. https://doi.org/10.1007/978-3-642-45155-3 (ISBN 978-3-642-45154-6 ISBN 978-3-642-45155-3 (eBook))

    Book  Google Scholar 

  • Siegesmund S, WeissT VA (2002) Natural stone, weathering phenomena, conservation strategies and case studies. Geol Soc Lond, Spec Publ 205:1–7

    Article  Google Scholar 

  • Snethlage R, Wendler E (1997) Moisture cycles and sandstone degradation. In: Baer NS, Snethlage R (eds) Saving our architectural heritage: the conservation of historic stone structures. Wiley, London, pp 7–24

    Google Scholar 

  • Sokol K, Prelević D, Romer R, Božović M, Van den Bogaard P, Stefanova E, Kostić B, Čokulov N (2020) Cretaceous ultrapotassic magmatism from the Sava-Vardar Zone of the Balkans. Lithos 354–355:105268. https://doi.org/10.1016/j.lithos.2019.105268. (ISSN 0024-4937)

    Article  Google Scholar 

  • Sousa LM, Río LMSD, Calleja L, Argandoña VGRD, Rey AR (2005) Infuence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Eng Geol 77:153–168. https://doi.org/10.1016/j.enggeo.2004.10.001

    Article  Google Scholar 

  • Sousa L, Siegesmund S, Wedekind W (2018) Salt weathering in granitoids: an overview on the controlling factors. Environ Earth Sci. https://doi.org/10.1007/s12665-018-7669-y

    Article  Google Scholar 

  • Srodon J (1999) Nature of mixed-layer clays and mechanisms of their formation and alteration. Annu Rev Earth Planet Sci 27:19–53

    Article  Google Scholar 

  • Stoch L, Sikora W (1976) Transformation of micas in the process of kaolinisation of granites and gneisses. Clays Clay Miner 24:156–162

    Article  Google Scholar 

  • Tematio P, Tchaptchet W, Nguetnkam J, Mbog M, Yongue R (2017) Mineralogical and geochemical characterization of weathering profiles developed on mylonites in the Fodjomekwet-Fotouni section of the Cameroon Shear Zone (CSZ) West Cameroon. J Afri Earth Sci 131(Jul):32–42. https://doi.org/10.1016/j.jafrearsci.2017.04.003

    Article  Google Scholar 

  • Tiennot M, Jean-Didier M, Bourgès A (2017) Influence of anisotropic microcracking due to swelling on the fracture toughness of a clay-bearing sandstone. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-017-1273-4

    Article  Google Scholar 

  • Tiennot M, Mertz JD, Bourgès A (2018) Sensitivity of kersantite toughness to moisture: influence of the phyllosilicates. Environ Earth Sci 77:483. https://doi.org/10.1007/s12665-018-7666-1

    Article  Google Scholar 

  • Toljić M, Matenco L, Stojadinovic U, Willingshofer E, Ljubović-Obradović D (2018) Understanding fossil fore-arc basins: inferences from the Cretaceous Adria-Europe convergence in the NE Dinarides. Global Planet Change. https://doi.org/10.1016/j.gloplacha.2018.01.018

    Article  Google Scholar 

  • Unkašević M (1994) Klima Beograda, Naučna knjiga, Beograd, pp. 123 (in Serbian)

  • Ustaszewski K, Schmid SM, Lugović B, Schuster R, Schaltegger U, Bernoulli D, Schefer S (2009) Late Cretaceous intra-oceanic magmatism in the internal Dinarides (northern Bosnia and Herzegovina): implications for the collision of the Adriatic and European plates. Lithos 108(1–4):106–125

    Article  Google Scholar 

  • Vázquez P, Alonso F, Esbert R, Ordaz J (2010) Ornamental granites: relationships between p-waves velocity, water capillary absorption and the crack network. Constr Build Mater 24:2536–2541. https://doi.org/10.1016/j.conbuildmat.2010.06.002

    Article  Google Scholar 

  • Vázquez P, Carrizo L, Thomachot-Schneider C, Gibeaux S, Alonso FJ (2016) Influence of surface finish and composition on the deterioration of building stones exposed to acid atmospheres. Constr Build Mater 106:392–403. https://doi.org/10.1016/j.conbuildmat.2015.12.125

    Article  Google Scholar 

  • Vázquez P, Sánchez-Delgado N, Carrizo L et al (2018) Statistical approach of the influence of petrography in mechanical properties and durability of granitic stones. Environ Earth Sci 77:287. https://doi.org/10.1007/s12665-018-7475-6

    Article  Google Scholar 

  • Vázquez-Menéndez P, Esbert RM, Alonso FJ, Ordaz J (2008) Evaluation of damage induced by salt crystallization in granitic building stones. In: Lukaszewicz JW, Niemcewicz P (eds) 11th International congress on Deterioration and Conservation of Stone, Torún, vol I, pp 325–332

  • Wedekind W, López-Doncel R, Dohrmann R, Kocher M, Siegesmund S (2012) Weathering of volcanic tuff rocks caused by moisture expansion. Environ Earth Sci. https://doi.org/10.1007/s12665-012-2158-1

    Article  Google Scholar 

  • Wilson MJ (1970) A study of weathering in a soil derived from a biotite–hornblende rock: I. Weathering of biotite. Clay Miner 8:291–303

    Article  Google Scholar 

  • Wilson MJ (1986) Mineral weathering processes in podzolic soils on granitic materials and their implications for surface water acidification. J Geol Soc 143:691–697

    Article  Google Scholar 

  • Winkler EM (1994) Stone in architecture properties, durability, Springer Science & Business Media, ISBN 978-3540576266

  • Winkler EM (1997) Stone in architecture properties, durability, Springer-Verlag, Berlin Heildelberg New York, ISBN 978-3-662-10072-1

Download references

Acknowledgements

The authors are grateful for the assistance of Suzana Erić from the University of Belgrade, Faculty of Mining and Geology, Department of Mineralogy, Petrology, Crystallography and Geochemistry, Belgrade, Serbia, for her collaboration in the SEM-EDS analyses and comments that greatly improved the manuscript.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection and analysis were performed by NN, PD and VM. The first draft of the manuscript was written by NN and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nevenka Novaković.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novaković, N., Dabić, P. & Matović, V. Atmospheric exposure vs burying: influences on damage intensity of built-in kersantite in the monument of the Small Staircase (Belgrade, Serbia). Environ Earth Sci 82, 114 (2023). https://doi.org/10.1007/s12665-023-10794-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-023-10794-6

Keywords

Navigation