Skip to main content
Log in

Petrographic characterization and durability of carbonate stones used in UNESCO World Heritage Sites in northeastern Italy

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This paper presents the petrographic and textural characterization of some ornamental limestones widely used in UNESCO World Heritage Sites in northeastern Italy, and the assessment of the main decay factors present in the environment where they are employed. Eleven carbonate building materials have been here considered, all commonly present in the built environment of northeastern Italy: two different varieties of Vicenza Stone (Nanto and Costozza), of Verona Stone (Red and Brown Verona), of Asiago Stone (Pink and White Asiago), and of Chiampo Stone (Ondagata and Paglierino), the Istria Stone (Orsera), the Aurisina Stone, and the Botticino Stone. The Carrara marble is also considered, and used as a reference material for the determination of the grain-size distribution. Stone durability was measured by accelerated aging tests which reproduced freeze–thaw and salt crystallization cycles, among the main causes of deterioration in the region. Petrographic and textural features of these carbonate rocks as well as their porosity resulted to strongly influence their deterioration rate, and their knowledge is, therefore, essential when trying to predict stone decay as a function of the local environmental forcings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data supporting the results are reported in the published article and in the electronic supplementary material.

References

  • Al-Bashaireh K (2021) Ancient white marble trade and its provenance determination. J Archaeol Sci 35:102777

    Google Scholar 

  • Antonelli F, Lazzarini L (2015) An updated petrographic and isotopic reference database for white marbles used in antiquity. Rendiconti Lincei Scienze Fisiche e Naturali 26:399–413. https://doi.org/10.1007/s12210-015-0423-4

    Article  Google Scholar 

  • Apostolopoulou M, Keramidas V, Galanaki N, Kalofonou M, Skoula C, Karoglou M, Delegou ET, Mouzakis C, Bakolas A, Moropoulou A, Pikoula M, Kalagri A, Farmakidou E, Michailidou M (2019) A study on the historical materials of the Apollo Pythios Temple in Rhodes and the evaluation of potential restoration materials. Heritage 2(1):988–1022. https://doi.org/10.3390/heritage2010065

    Article  Google Scholar 

  • Benavente D, Garcia-del-Cura MA, Fort R, Ordoñez S (2004) Durability estimation of porous building stones from pore structure and strength. Eng Geol 74:113–127. https://doi.org/10.1016/j.enggeo.2004.03.005

    Article  Google Scholar 

  • Benavente D, Cueto N, Martinez-Martinez J, Garcia-del-Cura MA, Cañaveras JC (2007a) The influence of petrophysical properties on the salt weathering of porous building rocks. Environ Geol 52:197–206. https://doi.org/10.1007/s00254-006-0475-y

    Article  Google Scholar 

  • Benavente D, Martinez-Martinez J, Cueto N, Garcia-del-Cura MA (2007b) Salt weathering in dual-porosity building dolostones. Eng Geol 94:215–226. https://doi.org/10.1016/j.enggeo.2007.08.003

    Article  Google Scholar 

  • Benavente D, Martinez-Martinez J, Cueto N, Ordoñez S, Garcia-del-Cura MA (2018) Impact of salt and frost weathering on the physical and durability properties of travertines and carbonate tufas used as building material. Enviro Earth Sci 77:147. https://doi.org/10.1007/s12665-018-7339-0

    Article  Google Scholar 

  • Benavente D, de Jongh M, Cañaveras JC (2021) Weathering processes and mechanisms caused by capillary waters and pigeon droppings on porous limestones. Minerals 11:18. https://doi.org/10.3390/min11010018

    Article  Google Scholar 

  • Benchiarin S, Fassina V, Molin G (2012) Assessment of conservation treatments on Paduan Nanto Stone monuments. In of the Congress on the Deterioration and Conservation of Stone, New York

    Google Scholar 

  • Benchiarin S (2007) Carbonate lithotypes employed in historical monuments: quarry materials, deterioration and restoration treatments. Thesis, University of Padua, New. York

    Google Scholar 

  • Bigi G, Cosentino D, Parotto M, Sartori R, Scandone P (1991) Structural Model of Italy scale 1:500.000 sheet 5. CNR. Progetto Finalizzato Geodinamica, SELCA Firenze

    Google Scholar 

  • Borghi A, Berra V, D’Atri A, Dino GA, Gallo LM, Giacobino E, Martire L, Massaro G, Vaggelli G, Bertok C, Castelli D, Costa E, Ferrando S, Groppo C, Rolfo F (2015) Stone materials used for monumental buildings in the historical centre of Turin (NW Italy): architectonical survey and petrographical characterization of Via Roma. In: Heritage G (ed) Pereira D. Towards International Recognition of Building and Ornamental Stones. Geological Society. Special Publications. London, Stone

    Google Scholar 

  • Braga G (2004) Le pietre naturali da costruzione della città di Padova. Cleup, Padova

    Google Scholar 

  • Brimblecombe P (2010) Mapping heritage climatologies. In: Bunnik T (ed) Effect of climate change on built heritage. WTA Report Series, New York

    Google Scholar 

  • Bugini R, Folli L (2014) The use of “Aurisina limestone” in the Roman architecture (Milan and Lombardy). In: Proceedings of VIII Congresso Nazionale di Archeometria, Scienze e Beni Culturali: stato dell’arte e prospettive, Bologna 5–7 Febbraio 2014

  • Camuffo D (2019) Physics of drop formation and micropore condensation, microclimate for cultural heritage. Elsevier, Amsterdam

    Google Scholar 

  • Cantisani E, Pecchioni E, Fratini F, Garzonio CA, Malesani P, Molli G (2009) Thermal stress in the Apuan marbles: Relationship between microstructure and petrophysical characteristics. Int J Rock Mech Min Sci 46:128–137. https://doi.org/10.1016/j.ijrmms.2008.06.005

    Article  Google Scholar 

  • Capitano C, Peri G, Rizzo G, Ferrante P (2017) Toward a holistic environmental impact assessment of marble quarrying and processing: proposal of a novel easy-to-use IPAT-based method. Environ Monit Assess 189:108. https://doi.org/10.1007/s10661-017-5825-6

    Article  Google Scholar 

  • Cappellaro M, Dal Farra A, De Lorenzi PA (2012) DRIFT characterization of the “Soft Stone of the Berici Hills” and first results of a fast method for the classification of its main varieties through Multivariate Analysis. Sciences at Ca’ Foscari, Venezia

    Google Scholar 

  • Carmignani L, Giglia G, Klingfield R (1978) Structural evolution of the Apuane Alps: an example of continental margin deformation. J Geol 86:487–504. https://doi.org/10.1086/649714

    Article  Google Scholar 

  • Cassar J, Torpiano A, Zammit T, Micallef A (2017) Proposal for the nomination of Lower Globigerina Limestone of the Maltese Islands as a. Global Heri Stone Res. 40(3):221–231

    Google Scholar 

  • Cattaneo A, De Vecchi GP, Menegazzo Vitturi L (1976) Le pietre tenere dei Colli Berici. Società Cooperativa Tipografica, Padova

    Google Scholar 

  • Çelik MY, Sert M (2020) Accelerated aging laboratory tests for the evaluation of the durability of hydrophobic treated and untreated andesite with respect to salt crystallization, freezing–thawing, and thermal shock. Bull Eng Geol Env 79:3751–3770. https://doi.org/10.1007/s10064-020-01776-0

    Article  Google Scholar 

  • Clerici A, Meda A (2005) Confronto tra le caratteristiche meccaniche di diversi livelli di estrazione del Botticino Classico. Giornale Di Geologia Applicata 2:307–312. https://doi.org/10.1474/GGA.2005-02.0-45.0071

    Article  Google Scholar 

  • Coletti C, Cultrone G, Maritan L, Mazzoli C (2016) Combined multi-analytical approach for study of pore system in bricks: How much porosity is there? Mater Charact 121:82–92. https://doi.org/10.1016/j.matchar.2016.09.024

    Article  Google Scholar 

  • Coletti C, Maritan L, Cultrone G, Dalconi MC, Hein A, Molina E, Mazzoli C (2018) Recycling trachyte waste from the quarry to the brick industry: Effects on physical and mechanical properties, and durability of new bricks. Constr Build Mater 166:792–807. https://doi.org/10.1016/j.conbuildmat.2018.01.158

    Article  Google Scholar 

  • Coletti C, Borghi A, Cossio R, Dalconi MC, Dalla Santa G, Peruzzo L, Sassi R, Vettorello A, Galgaro A (2021) A multi-scale methods comparison to provide granitoid rocks thermal conductivity. Constr Build Mater 304:124612

    Article  Google Scholar 

  • Cornale P, Rosanò P (1994) Le pietre tenere del vicentino: uso e restauro. Associazione Artigiani della Provincia di Vicenza Camera di Commercio Industria Artigianato Agricoltura di Vicenza, Amministrazione Provinciale di Vicenza, Consorzio Artigiani Restauratori Veneti, Vicenza

    Google Scholar 

  • Crishna N, Banfill PFG, Goodsir S (2011) Embodied energy and CO2 in UK dimension stone. Resour Conserv Recycl 55:1265–1273. https://doi.org/10.1016/j.resconrec.2011.06.014

    Article  Google Scholar 

  • Crnković B, Jovičić D (1993) Dimension stone deposits in Croatia. Rudarsko-Geološko-Naftni Zbornik 5:139–163

    Google Scholar 

  • Cucchi F, Pirini Radrizzani C, Pugliese N (1987) The carbonate stratigraphic sequence of the Karst of Trieste (Italy). Memorie Società Geologica Italiana 40:35–44

    Google Scholar 

  • Cucchi F, Biolchi S, Zini L, Jurkovšek B, Kolar-Jurkovšek T (2015) Geologia e geomorfologia del Carso Classico. In: Cucchi F, Zini L, Calligaris C (eds) Le acque del Carso Classico Progetto/Projekt ITA-SLO 2007-2013 HYDROKARST. EUT Edizioni Università di Trieste, Trieste, pp 23–38

    Google Scholar 

  • Di Battistini G, Vernia L, Zucchi D, Modena M, Ronchini R (2005) Il marmo Botticino classico Nuovi dati sulla caratterizzazione fisico-meccanica di questo importante materiale lapideo ornamentale. L’informatore Del Marmista. 44(518):25–34

    Google Scholar 

  • Di Benedetto C, Cappelletti P, Favaro M, Graziano SF, Langella A, Calcaterra D, Colella A (2015) Porosity as key factor in the durability of two historical building stones: Neapolitan Yellow Tuff and Vicenza Stone. Eng Geol 193:310–319. https://doi.org/10.1016/j.enggeo.2015.05.006

    Article  Google Scholar 

  • Dunda S, Kujundžić T (2004) Historical review of exploitation and utilization of stone in Croatia. In: Přykril R (ed) Proceedings of the Congress “Dimension stone - new perspectives for a traditional building material”. Prague,14–17 June 2004, pp 29–34

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks, vol 1. American Association of Petroleum Geologists, Memoir, Tulsa, pp 108–121

    Google Scholar 

  • Durn G, Ottner F, Tišljar J, Mindszenty A, Barudžija U (2003) Regional subaerial unconformities in shallow-marine carbonate sequences of Istria: sedimentology, mineralogy, geochemistry and micromorphology of associated bauxites, palaeosols and pedo-sedimentary complexes. Field Trip P8, Field Trip Gidebook, 22nd IAS Meeting of Sedimentology, Opatija

  • Fassina V, Cherido M (1985) The Nanto stone deterioration and restoration of Loggia Cornaro in Padova. Preprints of the International Congress on Deterioration and Conservation of Stone, Lausanne

    Google Scholar 

  • Folk RL (1959) Practical petrographic classification of limestones. Am Asso Petrol Geol Bull 43:1–38. https://doi.org/10.1306/0BDA5C36-16BD-11D7-8645000102C1865D

    Article  Google Scholar 

  • Foraboschi P (2017) Specific structural mechanics that underpinned the construction of Venice and dictated Venetian architecture. Eng Fail Anal 78:169–195. https://doi.org/10.1016/j.engfailanal.2017.03.004

    Article  Google Scholar 

  • Freire-Lista DM, Fort R, Varas-Muriel MJ (2015) Freeze–thaw fracturing in building granites. Cold Reg Sci Technol 113:40–51. https://doi.org/10.1016/j.coldregions.2015.01.008

    Article  Google Scholar 

  • Freire-Lista DM, Sousa L, Carter R, Al-Na F (2021) Petrographic and petrophysical characterisation and structural function of the heritage stones in Fuwairit archaeological site. Impl Heri Conser. 44(1):43–58

    Google Scholar 

  • Frisone V, Preto N, Pisera A, Agnini C, Giusberti L, Papazzoni CA, De Angeli A, Beschin C, Mietto P, Quaggiotto E, Monaco P, Dominici S, Kiessling W, Luciani V, Roux M, Bosellini FR (2020) A first glimpse on the taphonomy and sedimentary environment of the Eocene siliceous sponges from Chiampo, Lessini Mts, NE Italy. Bollettino Della Società Paleontologica Italiana 59:299–313. https://doi.org/10.4435/BSPI.2020.25

    Article  Google Scholar 

  • Galaup S, Liu Y, Cerepi A (2012) New integrated 2D–3D physical method to evaluate the porosity and microstructure of carbonate and dolomite porous systems. Micro Mesopor Mater 154:175–186. https://doi.org/10.1016/j.micromeso.2011.12.021

    Article  Google Scholar 

  • Geometrante R, Almesberger D, Rizzo A (2000) Characterization of the State of compression of Pietra d’Istria elements by non-destructive ultrasonic technique. 15th World Conference on Nondestructive Testing, Roma (Italy)

  • Germinario L, Andriani GF, Laviano R (2015) Decay of calcareous building stone under the combined action of thermoclastism and cryoclastism: A laboratory simulation. Constr Build Mater 75:385–394. https://doi.org/10.1016/j.conbuildmat.2014.11.035

    Article  Google Scholar 

  • Germinario L, Siegesmund S, Maritan L, Mazzoli C (2017) Petrophysical and mechanical properties of Euganean trachyte and implications for dimension stone decay and durability performance. Enviro Earth Sci 76:739. https://doi.org/10.1007/s12665-017-7034-6

    Article  Google Scholar 

  • Germinario L, Coletti C, Girardi G, Maritan L, Praticelli N, Sassi R, Solstad J, Mazzoli C (2022) Microclimate and weathering in cultural heritage: design of a monitoring apparatus for field exposure tests. Heritage 5:3211–3219. https://doi.org/10.3390/heritage5040165

    Article  Google Scholar 

  • Giesche H (2006) Mercury Porosimetry: a general (practical) overview. Part Part Syst Charact 23:9–19. https://doi.org/10.1002/ppsc.200601009

    Article  Google Scholar 

  • Ginell WS (1994) The nature of changes caused by physical factors. In: Krumbein WE, Brimblocombe P, Cosgrove DE, Stainforth S (eds) Durability and Change. Wiley, New York, pp 71–94

    Google Scholar 

  • Ginevra M, Saralli M, Sedea R (1999) Il bacino estrattivo dei Colli Berici. In: Din M (ed) Assessorato alle politiche per l’ambiente, Regione del Veneto, Giunta Regionale; Quaderno. Venezia

    Google Scholar 

  • Govindaraju K (1994) Compilation of working values and sample description for 383 geostandards. Geostandards Newsletter, Special Issue 18:1–158. https://doi.org/10.1046/j.1365-2494.1998.53202081.x-i1

    Article  Google Scholar 

  • Graue B, Siegesmund S, Middendorf B (2011) Quality assessment of replacement stones for the Cologne Cathedral: mineralogical and petrophysical requirements. Envir Earth Sci 63:1799–1822. https://doi.org/10.1007/s12665-011-1077-x

    Article  Google Scholar 

  • Harrell JA (2008) Stone in Ancient Egypt. In: Selin H (ed) Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Springer, Dordrecht

    Google Scholar 

  • Jurkovšek B, Biolchi S, Furlani S, Kolar-Jurkovšek T, Zini L, Jež J, Tunis G, Bavec M, Cucchi F (2016) Geology of the Classical Karst Region (SW Slovenia–NE Italy). J Maps 12:352–362. https://doi.org/10.1080/17445647.2016.1215941

    Article  Google Scholar 

  • Kotradyová V (2019) Local identity in material culture as part of wellbeing and social sustainability. Visions Sustain. 11:17–28

    Google Scholar 

  • Kottek M, Greiser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263. https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  • Lazzarini L (2019) Ancient Mediterranean polychrome stones. EMU Notes Mineral 20(10):367–392. https://doi.org/10.1180/EMU-notes.20.10

    Article  Google Scholar 

  • Lazzarini L (2006) Poikiloi Lithoi, Versicvlores Macvlae: i Marmi Colorati della Grecia Antica. Storia, uso, diffusione cave, geologia, caratterizzazione scientifica, archeometria, deterioramento Marmora 2/2006 Suppl. 1. Pisa, Fabrizio serra Editore, p 290

    Google Scholar 

  • Lazzarini L (2012) Pietra d’Istria: quarries, characterization, deterioration of the stone of Venice. In: Din M (ed) of the Congress on the Deterioration and Conservation of Stone. New York

    Google Scholar 

  • Lukeneder A (2010) Lithostratigraphic definition and stratotype for the Puez Formation: formalisation of the Lower Cretaceous in the Dolomites (S. Tyrol, Italy). Austrian J Earth Sci 103:138–158

    Google Scholar 

  • Lukeneder A (2011) The Biancone and Rosso Ammonitico facies of the northern Trento Plateau (Dolomites, Southern Alps, Italy). Annalen Des Naturhistorischen Museums in Wien, Serie A 113:9–33

    Google Scholar 

  • Marchesini B, Biscontin G, Frascati S (1972) Alterazione delle pietre tenere dei colli Berici. Atti XXVI Congresso ATI, Roma

    Google Scholar 

  • Mariani S, Rosso F, Ferrero M (2018) Building in historical areas: identity values and energy performance of innovative massive stone envelopes with reference to traditional building solutions. Buildings 8(2):17

    Article  Google Scholar 

  • Maritan L, Mazzoli C, Melis E (2003) A multidisciplinary approach to the characterization of Roman gravestones from Aquileia (Udine, Italy). Archaeometry 45:363–374. https://doi.org/10.1111/1475-4754.00114

    Article  Google Scholar 

  • Martínez-Martínez J, Benavente D, Gomez-Heras M, Marco-Castaño L, García-del-Cura MÁ (2013) Non-linear decay of building stones during freeze–thaw weathering processes. Constr Build Mater 38:443–454. https://doi.org/10.1016/j.conbuildmat.2012.07.059

    Article  Google Scholar 

  • Martire L (1996) Stratigraphy, facies and synsedimentary tectonics in the Jurassic Rosso Ammonitico Veronese (Altopiano di Asiago, NE Italy). Facies 35(1):209. https://doi.org/10.1007/BF02536963

    Article  Google Scholar 

  • Martire L, Clari P, Lozar F, Pavia G (2006) The Rosso Ammonitico Veronese (Middle-Upper Jurassic of the Trento Plateau): a proposal of lithostratigraphic ordering and formalization. Riv Ital Paleontol Stratigr 112:227–250

    Google Scholar 

  • Masetti D, Figus B, Jenkyns HC, Barattolo F, Mattioli E, Posenato R (2017) Carbon-isotope anomalies and demise of carbonate platforms in the Sinemurian (Early Jurassic) of the Tethyan region: evidence from the Southern Alps (Northern Italy). Geol Mag 154:625–650. https://doi.org/10.1017/S0016756816000273

    Article  Google Scholar 

  • Massari F, Medizza F, Sedea R (1976) L’evoluzione geologica dell’area euganea tra il Giurese superiore e l’Oligocene inferiore. Memorie Degli Istituti Di Geologia e Mineralogia Dell’università Di Padova 30:174–197

    Google Scholar 

  • Matteucci R, Russo A (2005) The Middle Eocene siliceous sponges from Val di Chiampo (Lessini Mountains, northern Italy) Annali dell’Università di Ferrara. Museologia scientifica e naturalistica, Sezione, pp 1–13

    Google Scholar 

  • Meccheri M, Molli G, Conti P, Blasi P, Vaselli L (2007) Carrara marble (Alpi Apuane, Italy): a geological and economical updated review. Zeitschrift Der Deutschen Gesellschaft Für Geowissenschaften 158:719–735. https://doi.org/10.1127/1860-1804/2007/0158-0719

    Article  Google Scholar 

  • Molina E, Cultrone G, Sebastián E, Alonso FJ (2013) Evaluation of stone durability using a combination of ultrasound, mechanical and accelerated aging tests. J Geophys Eng 10(3):035003

    Article  Google Scholar 

  • Moro F, Böhni H (2002) Ink-bottle effect in mercury intrusion porosimetry of cement-based materials. J Colloid Interface Sci 246:135–149. https://doi.org/10.1006/jcis.2001.7962

    Article  Google Scholar 

  • Orr SA, Young M, Stelfox D, Curran J, Viles H (2018) Wind-driven rain and future risk to built heritage in the United Kingdom: Novel metrics for characterising rain spells. Science Total Environment. 11:1098–1111

    Article  Google Scholar 

  • Papazzoni CA, Sirotti A (1995) Nummulite biostratigraphy at the Middle/Upper Eocene boundary in the northern Mediterranean area. Riv Ital Paleontol Stratigr 101:63–80

    Google Scholar 

  • Pires V, Amaral PM, Simão JAR, Galhano C (2022) Experimental procedure for studying the degradation and alteration of limestone slabs applied on exterior cladding. Enviro Earth Sci 81:59. https://doi.org/10.1007/s12665-022-10204-3

    Article  Google Scholar 

  • Polck MAR, de Medeiros MAM, de Araújo-Júnior HI (2020) Geodiversity in urban cultural spaces of Rio de Janeiro city: revealing the geoscientific knowledge with emphasis on the fossil content. Geoheritage 12:47. https://doi.org/10.1007/s12371-020-00470-7

    Article  Google Scholar 

  • Pötzl C, Siegesmund S, López-Doncel R, Dohrmann R (2022) Key parameters of volcanic tuffs used as building stone: a statistical approach. Envir Earth Sci 81:10. https://doi.org/10.1007/s12665-021-10114-w

    Article  Google Scholar 

  • Previato C (2018) Aurisina Limestone in the Roman Age: from Karst quarries to the cities of the Adriatic basin. In: Matetić Poljak D (ed) of the. Interdisciplinary Studies on Ancient Stone

    Google Scholar 

  • Primavori P (2015) Carrara Marble: a nomination for ‘Global Heritage Stone Resource’ from Italy. In: Pereira D (ed) Global heritage stone: towards international recognition of building and ornamental stones. Geological Society Special Publications, London

    Google Scholar 

  • Primavori P (2019) Lecce Stone (Italy): proposed as a candidate for Global Heritage Stone Resource EGU General Assembly 2019. Geophys Res Abstr 21:2019–8467

    Google Scholar 

  • Primavori P (2020) Rosso Verona marble (Italy): proposed as a candidate for “Global Heritage Stone Resource.” EGU General Assem. 8:2020–2873

    Google Scholar 

  • Rodolico F (1953) Le pietre delle città d’Italia. Le Monnier, Firenze

    Google Scholar 

  • Sabbioni C, Brimblecombe P, Cassar M (2012) The Atlas of climate change impact on European cultural heritage. Anthem Press Scientific analysis and management strategies NOAH’S ARK Project

    Google Scholar 

  • Salvini S, Bertoncello R, Coletti C, Germinario L, Maritan L, Massironi M, Pozzobon R, Mazzoli C (2022) Recession rate of carbonate rocks used in cultural heritage: Textural control assessed by accelerated ageing tests. J Cult Herit 57:154–164. https://doi.org/10.1016/j.culher.2022.08.010

    Article  Google Scholar 

  • Scherer G (1999) Crystallization in pores. Cem Concr Res 29:1347–1358. https://doi.org/10.1016/S0008-8846(99)00002-2

    Article  Google Scholar 

  • Schirolli P (1997) La successione liassica nelle Prealpi Bresciane centro-occidentali (Alpi Meridionali, Italia): stratigrafia, evoluzione paleogeografico-strutturale ed eventi connessi al rifting. Atti Ticinensi di Scienze della Terra. Serie Speciale 6:5–137

    Google Scholar 

  • Schirolli P (2007) Studio macroscopico dei materiali lapidei locali impegnati nelle epigrafi bresciane di età Alto-Medievale. Natura Bresciana 35:13–33

    Google Scholar 

  • Sesana E, Gagnon AS, Ciantelli C, Cassar JA, Hughes JJ (2021) Climate change impacts on cultural heritage: A literature review. Wires Clim Change 12:710. https://doi.org/10.1002/wcc.710

    Article  Google Scholar 

  • Siegesmund S, Snethlage R (2014) Stone in Architecture. Springer, London

    Book  Google Scholar 

  • Siegesmund S, Sousa L, Knell C (2018) Thermal expansion of granitoids. Envir Earth Sci 77:41. https://doi.org/10.1007/s12665-017-7119-2

    Article  Google Scholar 

  • Siegesmund S, Dürrast H (2011) Physical and mechanical properties of rocks. In: Siegesmund S (ed) Stone in Architecture. Springer, Berlin Heidelberg

    Chapter  Google Scholar 

  • Šimunić Buršić M, Aljinović D, Cancelliere S (2007) Kirmenjak – Pietra d’Istria: a preliminary investigation of its use in Venetian architectural heritage. In: Přikryl R, Smith BJ (eds) Building stone decay: from diagnosis to conservation. Geological Society, Special Publications, London

    Google Scholar 

  • Sitzia F, Lisci C, Mirão J (2021) Accelerate ageing on building stone materials by simulating daily seasonal thermo-hygrometric conditions and solar radiation of Csa Mediterranean climate. Constr Build Mater 266:121009

    Article  Google Scholar 

  • Smith BJ, Gomez-Heras M, McCabe S (2008) Understanding the decay of stone-built cultural heritage. Prog Phys Geogr 32(4):361–439. https://doi.org/10.1177/0309133308098119

    Article  Google Scholar 

  • Sousa H, Sousa R (2021) Durability of stone cladding in buildings: a case study of marble slabs affected by bowing. Buildings 9:229. https://doi.org/10.3390/buildings9110229

    Article  Google Scholar 

  • Sousa LMO, Suárez del Río LM, Calleja L, Ruiz de Argandonã VG, Rodríguez-Rey A (2005) Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Eng Geol 77:153–168. https://doi.org/10.1016/j.enggeo.2004.10.001

    Article  Google Scholar 

  • Sousa LMO, Siegesmund S, Wedekind W (2018) Salt weathering in granitoids: an overview on the controlling factors. Envir Earth Sci 77:502. https://doi.org/10.1007/s12665-018-7669-y

    Article  Google Scholar 

  • Sousa LMO, Menningen J, Siegesmund L-D, S, (2021) Petrophysical properties of limestones: influence on behaviour under different environmental conditions and applications. Enviro Earth Sci 80:814. https://doi.org/10.1007/s12665-021-10064-3

    Article  Google Scholar 

  • Steiger M (2005a) Crystal growth in porous materials – I: The crystallization pressure of large crystals. J Cryst Growth 282:455–469. https://doi.org/10.1016/j.jcrysgro.2005.05.007

    Article  Google Scholar 

  • Steiger M (2005b) Crystal growth in porous materials – II: Influence of crystal size on the crystallization pressure. J Cryst Growth 282:470–481. https://doi.org/10.1016/j.jcrysgro.2005.05.008

    Article  Google Scholar 

  • UNI EN 12370 (2001) Natural stone test methods – Determination of resistance to salt crystallisation

  • UNI EN 12371 (2003) Natural stone test methods – Determination of frost resistance

  • UNI EN 1926 (2007) Natural stone test methods – Determination of uniaxial compressive strength

  • UNI EN 13755 (2008) Natural stone test methods – Determination of water absorption at atmospheric pressure

  • Vernia L, Zucchi D, Modena M (2005) Il marmo Botticino classico – Classic Botticino Marble. L’informatore Del Marmista 43(515):39–47

    Google Scholar 

  • Vidorni G, Sardella A, De Nuntiis P, Volpi F, Dinoi A, Contini D, Comite V, Vaccaro C, Fermo P, Bonazza A (2019) Air pollution impact on carbonate building stones in Italian urban sites. Euro Phy J plus 134:439. https://doi.org/10.1140/epjp/i2019-12943-0

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Miner 95:185–187. https://doi.org/10.2138/am.2010.3371

    Article  Google Scholar 

  • Winterer EL, Bosellini A (1981) Subsidence and sedimentation on Jurassic passive continental margin, Southern Alps, Italy. Am Asso Petrol Geol Bull 65(3):394–421. https://doi.org/10.1306/2F9197E2-16CE-11D7-8645000102C1865D

    Article  Google Scholar 

  • Zalooli A, Khamehchiyan M, Nikudel MR, Freire-Lista DM, Fort R, Ghasemi S (2020) Artificial microcracking of granites subjected to salt crystallization aging test. Bull Eng Geol Env 79:5499–5515. https://doi.org/10.1007/s10064-020-01891-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to LAMA (Laboratory for Analyzing Materials of Ancient Origin, IUAV University of Venice) for providing the ultrasound equipment, and to the University of Parma for the Mercury Intrusion Porosimetry analysis. Samples were provided by Colosio snc, Grassi Pietre srl, and Euromarmi srl, which are also acknowledged.

Funding

This research was funded by Project CPDA151883 of the University of Padova (C.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Mazzoli.

Ethics declarations

Conflict of interest

The authors declare that the above research was supported by Project CPDA151883 of the University of Padova (C.M.). Moreover, the authors also declare that no other support was received during the manuscript preparation, and they have no relevant or non-financial interests to disclose. All authors contributed to data acquisition and to the different parts of the manuscript. All images are full propriety of the authors with the exception of the following images which are under CC BY 2.0 and CC BY 3.00 license (free to share and adapt for any purpose even commercially with credit of attribution): Colin Hepburn [3b]; Bradley Griffin [3c]; David Nichols [3d]; Antonio Cozzolino [3 g]; Gary Pembridge [3 h]; Litany [4i]; Chesi [5e]; Gehadad [5f]; Abassign [5 g]; Martin G. [6a]; Felipe Tofani [6c]; Geoff Livingston [6e]; Tomas Galvez [6 g]; Jorg Bitter Unna [6 h]; ap [6j] or in the Public Domain [4a, 4b, 4c, 4 h, 5d, 5 h, 6f, 6i].

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a Topical Collection in Environmental Earth Sciences on “Building Stones and Geomaterials through History and Environments – from Quarry to Heritage. Insights of the Conditioning Factors”, guest edited by Siegfried Siegesmund, Luís Manuel Oliveira Sousa, and Rubén Alfonso López-Doncel.

Supplementary Information

Below is the link to the electronic supplementary material.

12665_2022_10732_MOESM1_ESM.tif

Supplementary file1 Figure 1S. Vicenza Stone in the cultural heritage: a) Loggia Cornaro in Padua (Nanto Stone); b) Church of Saint Lawrence in Vicenza (Nanto Stone); c) Olympic Theatre in Vicenza (Costozza Stone); d) Barbaran da Porto Palace in Vicenza (ground floor in Nanto Stone, first floor in Costozza Stone); e) statue at Villa Pisani in Strà, Padua (Costozza Stone); f) original sculpture decorating the façade of Saint George’s oratory, now in the cloister of the Basilica of Saint Anthony in Padua (Nanto Stone); g) Palazzo della Ragione in Vicenza (Costozza Stone); h) sculptures in Prato della Valle square, Padua (Costozza Stone) (TIF 24706 KB)

12665_2022_10732_MOESM2_ESM.tif

Supplementary file2 Figure 2S. Aurisina Stone in the cultural heritage: a) Devil’s Bridge in Cividale del Friuli; b) Duino Castle; c) Imperial Palace in Wien. Orsera Stone in the cultural heritage: d) detail of a common Venetian building where the whiteness of Istria stone contrasts with the color of bricks; e) detail of Salute church in Venice; f) Mausoleum of Theodoric in Ravenna; g) Bridge of Sighs in Venice; h) Cathedral of Fermo; i) a traditional kažuni of the Istrian peninsula (TIF 13156 KB)

12665_2022_10732_MOESM3_ESM.tif

Supplementary file3 Figure 3S. Chiampo Stone in the cultural heritage: a) detail of a column in Piazza dei Signori in Vicenza; b) Exchange Palace in Genoa; c) headstones in the CWGC (Commonwealth War Graves Commission) War Cemetery in Bordighera; d) International Archives Building in the Bahá’í World Centre of Haifa (Israel) e) “Palazzo Grande” in Livorno; f) Courthouse in Bolzano. Verona marble in the cultural heritage: g) lion sculptures supporting a column at the entrance of the Basilica of Santa Maria Maggiore in Bergamo; h) Arena in Verona. Asiago stone in the cultural heritage: i) Asiago War Memorial. (TIF 13181 KB)

12665_2022_10732_MOESM4_ESM.tif

Supplementary file4 Figure 4S. Botticino Stone in the cultural heritage and modern architecture: a) Grand Central Terminal in New York; b) CWGC (Commonwealth War Graves Commission) Phaleron War Cemetery in Athens; c) Capitolium of Brixia, the Roman Temple dedicated to the Emperor Vespasian in Brescia; d) Vittoriano Monument in Rome; e) White House in Washington DC. Carrara marble in the cultural heritage and modern architecture: f) Harvard Medical School in Boston; g) Sheikh Zayed Grand Mosque in Abu Dhabi, h) Michelangelo’s David, i) Oslo Opera House, j) Prem Mandir Hindu Temple in Vrindavan, India (TIF 15941 KB)

12665_2022_10732_MOESM5_ESM.tif

Supplementary file5 Figure 5S. The full set of samples: capillary rise after 30 minutes, marked by a dotted yellow line, studied on two different stone orientation (TIF 99889 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvini, S., Coletti, C., Maritan, L. et al. Petrographic characterization and durability of carbonate stones used in UNESCO World Heritage Sites in northeastern Italy. Environ Earth Sci 82, 49 (2023). https://doi.org/10.1007/s12665-022-10732-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10732-y

Keywords

Navigation