Skip to main content
Log in

Strontium and lead isotopes as environmental tracers in a water supply watershed in Southern Brazil

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Urbanization and agriculture increase the risk of water contamination in watersheds. A special concern arises when this water is used for public supply. Conventional hydrochemical methods have been applied to identify contaminants in bulk water; however, there is lack of investigation of their origins. Environmental isotopes can be used to address such knowledge gap by tracking the harmful substance back to its origins. This study evaluates the interference of urbanization as well as inorganic fertilizers in the suspended sediments of the tributaries of two impoundments, whose water supplies 72% of the municipality of Caxias do Sul, Southern Brazil. To achieve this goal, the isotopic ratios 87Sr/86Sr, 208Pb/204Pb, 206Pb/204Pb, 207Pb/204Pb, 208Pb/206Pb and 207Pb/206Pb were selected as geochemical tracers, showing promising results to evaluate sources of contamination in source water. The results of strontium isotopes showed two distinct groups, one marked by the geogenic origin of the sediment and the other by inorganic fertilizers. Lead isotopes indicated that suspended sediments have signatures compatible with the rocks that occur in the region and are in a range of isotopic ratios different from fertilizers or copper sulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  • Åberg G, Löfvendahl R, Stijfhoorn D, Råheim A (1995) Provenance and weathering depth of carbonaceous gotland sandstone by use of carbon and oxygen isotopes. Atmos Environ 29:781–789. https://doi.org/10.1016/1352-2310(94)00324-E

    Article  Google Scholar 

  • Belladona R, De Vargas T (2017) Space-time precipitation distribution and the relevance of the orography of Caxias do Sul. Brazil Rev Bras Cartogr 69(3):607–620

    Google Scholar 

  • Bellieni G, Comin-Chiaramonti P, Marques L et al (1984) High- and low-Ti flood basalts from the Paraná plateau (Brazil): petrology and geochemical aspects bearing on their mantle origin. N J Miner 150:273–306

    Google Scholar 

  • Bellieni G, Comin-Chiaramonti P, Marques LS et al (1986) Petrogenetic aspects of acid and basaltic lavas from the Paraná Plateau (Brazil): geological, mineralogical and petrochemical relationship. J Pet 27(4):915–944

    Article  Google Scholar 

  • Bird G, Brewer PA, Macklin MG et al (2010) Quantifying sediment-associated metal dispersal using Pb isotopes: Application of binary and multivariate mixing models at the catchment-scale. Environ Pollut 158:2158–2169. https://doi.org/10.1016/j.envpol.2010.02.020

    Article  Google Scholar 

  • Böhlke JK, Horan M (2000) Strontium isotope geochemistry of groundwaters and streams affected by agriculture, Locust Grove, MD. Appl Geochem 15:599–609

    Article  Google Scholar 

  • Box MR, Krom MD, Cliff RA et al (2011) Response of the Nile and its catchment to millennial-scale climatic change since the LGM from Sr isotopes and major elements of East Mediterranean sediments. Q Sci Rev 30:431–442. https://doi.org/10.1016/j.quascirev.2010.12.005

    Article  Google Scholar 

  • Brasil (2005) Decreto nº 5.334. Diário Oficial da União, Presidência da República. In: https://www.planalto.gov.br/ccivil_03/_ato2004-2006/2005/decreto/d5334.htm. Accessed 05 Dec 2022

  • Buffon P, De Araújo B (2021) Utilização do Índice de Conformidade ao Enquadramento para Analisar a Qualidade da Água de duas Represas de Captação de Caxias do Sul (RS), Brasil. In: VIII Simpósio de ecologia de reservatórios. Minas Gerais, Brazil, p 163

  • Bullen TD, Kendall C (1998) Tracing of weathering reactions and water flowpaths: a multi-isotope approach. Isotope tracers in catchment hydrology. Elsevier Science B.V, Amsterdam, pp 611–646

    Chapter  Google Scholar 

  • Capo RC, Stewart BW, Chadwick OA (1998) Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82:197–225. https://doi.org/10.1016/S0016-7061(97)00102-X

    Article  Google Scholar 

  • Caxias do Sul (City Hall) (2018) GeoEye satellite imagery. In: GeoCaxias Digit. Map. https://geopublico.caxias.rs.gov.br/geocaxias/map?config=src/webgis/config/map/config-all.xml. Accessed 18 Jan 2021

  • Charalampides G, Manoliadis O (2002) Sr and Pb isotopes as environmental indicators in environmental studies. Environ Int 28:147–151. https://doi.org/10.1016/S0160-4120(02)00020-X

    Article  Google Scholar 

  • Clark ID, Fritz P (1999) Water-rock interaction. Environmental isotopes in hydrogeology. CRC Press, Boca Raton, pp 217–217

    Google Scholar 

  • Conama (National Environment Council) (2009) Resolution CONAMA 420/2009. Ministry of the Environment, Brazil

    Google Scholar 

  • Cordani U, Civetta L, Mantovani M et al (1988) Isotope geochemistry of flood volcanism from the Paraná Basin (Brazil). The Mesozoic flood volcanism of the Paraná basin: petrogenetic and geophysical aspects. IAG-USP Press, São Paulo, pp 157–178

    Google Scholar 

  • de Lima EF, Philipp RP, Rizzon GC et al (2012) Sucessões vulcânicas, modelo de alimentação e geração de domos de lava ácidos da Formação Serra Geral na região de São Marcos-Antônio Prado (RS). Geol USP Ser Cient 12:49–64. https://doi.org/10.5327/Z1519-874X2012000200004

    Article  Google Scholar 

  • de Lima EF, Waichel BL, Rossetti LDMM et al (2018) Feeder systems of acidic lava flows from the Paraná-Etendeka Igneous Province in southern Brazil and their implications for eruption style. J South Am Earth Sci 81:1–9. https://doi.org/10.1016/j.jsames.2017.11.004

    Article  Google Scholar 

  • de Vargas T, Roisenberg A, Pulgati FH (2018) Contamination of botton sediments in the watersheds of public supply in Caxias do Sul, RS. Geociencias 37:331–346. https://doi.org/10.5016/geociencias.v37i2.12019

    Article  Google Scholar 

  • De Vargas T, Belladona R, Dal Bosco V et al (2021) Análise de homogeneidade da geoquímica de sedimentos das bacias de captação Faxinal e Maestra: a hipótese é nula (Ho)? In: Schneider VE, Bortolin TA, Carra SHZ (eds) Gestão e tecnologias para o meio ambiente: visões e ações interdisciplinares. Educs, Caxias do Sul, pp 109–117

    Google Scholar 

  • Erel Y (1998) Mechanisms and velocities of anthropogenic Pb migration in Mediterranean soils. Environ Res 78:112–117. https://doi.org/10.1006/enrs.1997.3811

    Article  Google Scholar 

  • Geraldes MC, Paula AH, Godoy JM, Valeriano CM (2006) Pb isotope signatures of sediments from Guanabara Bay, SE Brazil: evidence for multiple anthropogenic sources. J Geochem Explor 88:384–388. https://doi.org/10.1016/j.gexplo.2005.08.081

    Article  Google Scholar 

  • Grezzi G, Ayuso RA, De Vivo B et al (2011) Lead isotopes in soils and groundwaters as tracers of the impact of human activities on the surface environment: the Domizio-Flegreo Littoral (Italy) case study. J Geochemical Explor 109:51–58. https://doi.org/10.1016/j.gexplo.2010.09.012

    Article  Google Scholar 

  • Hansmann W, Köppel V (2000) Lead-isotopes as tracers of pollutants in soils. Chem Geol 171:123–144

    Article  Google Scholar 

  • Hawkesworth C, Gallagher K, Kelley S et al (1992) Paraná magmatism and opening of the South Atlantic. Geol Soc London 68:221–240

    Article  Google Scholar 

  • Hosono T, Nakano T, Igeta A et al (2007) Impact of fertilizer on a small watershed of Lake Biwa: use of sulfur and strontium isotopes in environmental diagnosis. Sci Total Environ 384:342–354. https://doi.org/10.1016/j.scitotenv.2007.05.033

    Article  Google Scholar 

  • IBGE (Instituto Brasileiro de Geografia e Estatística) (2021) Cidades e Estados: população estimada. https://www.ibge.gov.br/cidades-e-estados/rs/caxias-do-sul.html. Accessed 7 Oct 2021

  • Komárek M, Ettler V, Chrastný V, Mihaljevič M (2008) Lead isotopes in environmental sciences: a review. Environ Int 34:562–577. https://doi.org/10.1016/j.envint.2007.10.005

    Article  Google Scholar 

  • Köppen W, Geiger R (1928) Klimate der Erde. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Kuhn IA (2011) Análise multi-elementar e transferência de metais e isótopos de chumbo no sistema planta-solo-água subterrânea em área contaminada por calda bordalesa na região vinífera. Federal University of Rio Grande do Sul, Porto Alegre

    Google Scholar 

  • Li X, Shen Z, Wai WH, Li Y-S (2001) Chemical forms of Pb, Zn and Cu in the sediment Pro®les of the Pearl River Estuary. Mar Pollut Bull 42:215–223

    Article  Google Scholar 

  • Lisboa NA, Remus MVD, Dani N (2003) Estudo geológico e hidrogeológico regional para o aproveitamento de água do aqüífero Guarani no município de Caxias do Sul. UFRGS, Porto Alegre, Brazil

    Google Scholar 

  • Martin CE, McCulloch MT (1999) Nd-Sr isotopic and trace element geochemistry of river sediments and soils in a fertilized catchment. Elsevier, New South Wales

    Google Scholar 

  • Mirlean N, Robinson D, Kawashita K et al (2005) Identification of local sources of lead in atmospheric deposits in an urban area in Southern Brazil using stable lead isotope ratios. Atmos Environ 39:6204–6212. https://doi.org/10.1016/j.atmosenv.2005.07.002

    Article  Google Scholar 

  • Oliveira DC, Lafon JM, de Oliveira LM (2016) Distribution of trace metals and Pb isotopes in bottom sediments of the Murucupi River, North Brazil. Int J Sediment Res 31:226–236. https://doi.org/10.1016/j.ijsrc.2016.05.001

    Article  Google Scholar 

  • Peate DW (1989) Stratigraphy and petrogenesis of Paraná Continental Flood Basalts. The Open University, Southern Brazil

    Google Scholar 

  • Pierson-Wickmann AC, Aquilina L, Weyer C et al (2009) Acidification processes and soil leaching influenced by agricultural practices revealed by strontium isotopic ratios. Geochim Cosmochim Acta 73:4688–4704. https://doi.org/10.1016/j.gca.2009.05.051

    Article  Google Scholar 

  • Pinto VM, Hartmann LA, Santos JOS et al (2011) Zircon U–Pb geochronology from the Paraná bimodal volcanic province support a brief eruptive cycle at ~ 135 Ma. Chem Geol 281:93–102. https://doi.org/10.1016/j.chemgeo.2010.11.031

    Article  Google Scholar 

  • Riou C (1995) Sources Des Excès de Phophore Dans Les Eaux Superfìcilles de Bretagne. Université de Rennes 1, Rennes

    Google Scholar 

  • Roisenberg A, Viero APO (2000) Vulcanismo Mesozóico da Bacia do Paraná no Rio Grande do Sul. In: Holz M, De Ros F (eds) Geologia do Rio Grande do Sul. CIGO/UFRGS, Porto Alegre, pp 355–374

    Google Scholar 

  • Santos SN, Lafon JM, Corrêa JAM et al (2012) Distribuição e assinatura isotópica de Pb em sedimentos de fundo da foz do Rio Guamá e da Baía do guajará (Belém - Pará). Quim Nova 35:249–256. https://doi.org/10.1590/S0100-40422012000200004

    Article  Google Scholar 

  • Shepherd TJ, Chenery SRN, Pashley V et al (2009) Regional lead isotope study of a polluted river catchment: River Wear, Northern England, UK. Sci Total Environ 407:4882–4893. https://doi.org/10.1016/j.scitotenv.2009.05.041

    Article  Google Scholar 

  • Streck EV, Kämpf N, Dalmolin RSD et al (2008) Solos do Rio Grande do Sul, 2nd edn. EMATER/RS-ASCAR, Porto Alegre

    Google Scholar 

  • Tarzia M, De Vivo B, Somma R et al (2002) Anthropogenic vs. natural pollution: an environmental study of an industrial site under remediation (Naples, Italy). Geochem Explor Environ Anal 2:45–56. https://doi.org/10.1144/1467-787302-006

    Article  Google Scholar 

  • Techer I, Lancelot J, Descroix F, Guyot B (2011) About Sr isotopes in coffee “Bourbon Pointu” of the Réunion Island. Food Chem 126:718–724. https://doi.org/10.1016/j.foodchem.2010.11.035

    Article  Google Scholar 

  • Theuring P, Rode M, Behrens S et al (2013) Identification of fluvial sediment sources in the Kharaa River catchment, Northern Mongolia. Hydrol Process 27:845–856. https://doi.org/10.1002/hyp.9684

    Article  Google Scholar 

  • Townsend AT, Seen AJ (2012) Historical lead isotope record of a sediment core from the Derwent River (Tasmania, Australia): a multiple source environment. Sci Total Environ 424:153–161. https://doi.org/10.1016/j.scitotenv.2012.02.011

    Article  Google Scholar 

  • Umann LV, De lima EF, Sommer CA, De Liz DJ (2001) Vulcanismo ácido da região de cambará do sul; rs: litoquímica e discussão sobre a origem dos depósitos. Rev Bras Geociências 31:357–364

    Article  Google Scholar 

  • De Vargas T, Adami MVD, Aver E de AS, et al (2013) Monitoramento hidroquímico dos córregos afluentes da represa Faxinal, Caxias do Sul-RS. In: XX Brazilian Symposium on Water Resources, Bento Gonçalves, Brazil

  • Wayne UA, Ronald GS, Woodland EE (1970) Isotopic composition as a natural tracer of lead in the environment. Environ Sci Technol 4:305–313

    Article  Google Scholar 

  • Widory D, Kloppmann W, Chery L et al (2004) Nitrate in groundwater: an isotopic multi-tracer approach. J Contam Hydrol 72:165–188. https://doi.org/10.1016/j.jconhyd.2003.10.010

    Article  Google Scholar 

  • Zhang W, Feng H, Chang J et al (2008) Lead (Pb) isotopes as a tracer of Pb origin in Yangtze River intertidal zone. Chem Geol 257:257–263. https://doi.org/10.1016/j.chemgeo.2008.10.012

    Article  Google Scholar 

  • Zhang F, Jin Z, Li F et al (2013) The dominance of loess weathering on water and sediment chemistry within the Daihai Lake catchment, northeastern Chinese Loess Plateau. Appl Geochem 35:51–63. https://doi.org/10.1016/j.apgeochem.2013.05.013

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Public Water and Wastewater Service of the city of Caxias do Sul for the great logistic support to this research.

Funding

The authors declare that no funds, grants or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by TDV, AR and RB. The first draft of the manuscript was written by TDV and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tiago De Vargas.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Vargas, T., Roisenberg, A. & Belladona, R. Strontium and lead isotopes as environmental tracers in a water supply watershed in Southern Brazil. Environ Earth Sci 81, 544 (2022). https://doi.org/10.1007/s12665-022-10671-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10671-8

Keywords

Navigation