Skip to main content

Advertisement

Log in

A baseline survey of the geochemical characteristics of the Arctic soils of Alexandra Land within the Franz Josef Land archipelago (Russia)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The compositions of soils and their parent materials were studied within one of the most northern land areas of the world — the island of Alexandra Land of the Franz Josef Land archipelago. Contents of 65 trace and major elements were determined using atomic emission spectrometry (ICP-AES) and inductively coupled plasma spectrometry (ICP-MS). Other analyzed characteristics included soil pH, particle-size distribution and contents of carbon and nitrogen. The bedrock had an alkaline pH, whereas the soil pH ranged from weakly acid to alkaline. The textural class of the soils predominantly corresponded to sandy loam. The contents of clay and silt increased with depth due to the migration of these fractions with groundwater. The studied soils were formed on basalts with high contents of MgO, Fe2O3, TiO2, Cu, Co, V, Ni, Cr, Zn, and low contents of Pb and Hg. The present study confirms that the FJL basalts are similar to the Siberian Platform basalts in composition and belong to the continental basalt series. The composition of soils was generally similar to that of the bedrock. Compared to other Arctic archipelagos (i.e., Svalbard, Severnaya Zemlya), the soils of Alexandra Land are characterized by increased contents of Cu, Mn, Co, and Fe and reduced contents of Hg, Pb, and Cd. The median concentrations (mg kg−1) of trace elements in the soils were as follows: Cu—142, Zn—100, Ni—72, Pb—2.4, Cd—0.1, and Hg—0.0052. The low contents of Hg, Pb, and Cd in the soils are indicative of low inputs of these elements from both long-range transport and local sources of pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abakumov E, Shamilishviliy G, Yurtaev A (2017) Soil polychemical contamination on Beliy Island as key background and reference plot for Yamal region. Pol Polar Res 38(3):313–332. https://doi.org/10.1515/popore-2017-0020

    Article  Google Scholar 

  • Akeredolu FA, Barrie LA, Olson MP, Oikawa KK, Pacyna JM, Keeler GJ (1994) The flux of anthropogenic trace metals into the arctic from the mid-latitudes in 1979/80. Atmos Environ 28:1557–1572

    Article  Google Scholar 

  • AMAP (1998) AMAP assessment report: arctic pollution issues. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway

    Google Scholar 

  • AMAP (2005) AMAP assessment 2002: heavy metals in the arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway

    Google Scholar 

  • Aslam SN, Huber C, Asimakopoulos AG, Steinnes E, Mikkelsen Ø (2019) Trace elements and polychlorinated biphenyls (PCBs) in terrestrial compartments of Svalbard, Norwegian arctic. Sci Total Environ 685:1127–1138. https://doi.org/10.1016/j.scitotenv.2019.06.060

    Article  Google Scholar 

  • Barrie LA, Gregor D, Hargrave B, Lake R, Muir D, Shearer R, Tracey B, Bildeman T (1992) Arctic contaminants: sources, occurrence and pathways. Sci Total Environ 122:1–74

    Article  Google Scholar 

  • Bashkin VN (2017) Biogeochemical cycles in tundra ecosystems in areas impacted by gas industry facilities. Geochem Int 55:946–956. https://doi.org/10.1134/S0016702917100020

    Article  Google Scholar 

  • Bazzano A, Ardini F, Grotti M et al (2016) Elemental and lead isotopic composition of atmospheric particulate measured in the arctic region (Ny-Ålesund, Svalbard Islands). Rend Fis Acc Lincei 27:73–84. https://doi.org/10.1007/s12210-016-0507-9

    Article  Google Scholar 

  • Boyd R, Barnes S-J, De Caritat P, Chekushin V, Melezhik V, Reimann C, Zientek M (2009) Emissions from the copper–nickel industry on the Kola Peninsula and at Noril’sk, Russia. Atmos Environ 43:1474–1480. https://doi.org/10.1016/j.atmosenv.2008.12.003

    Article  Google Scholar 

  • Bulygina ON, Razuvaev VN, Trofimenko LT, Shvets NV (2021) Description of the database of monthly air temperature at meteostations in Russia. http://meteo.ru/data/. Accessed 25 Jun 2022

  • Carayannis EG, Cherepovitsyn AE, Ilinova AA (2017) Sustainable development of the Russian arctic zone energy shelf: the role of the quintuple innovation helix model. J Knowl Econ 8:456–470. https://doi.org/10.1007/s13132-017-0478-9

    Article  Google Scholar 

  • Dauvalter V (2003) Impact of mining and refining on the distribution and accumulation of nickel and other heavy metals in sediments of subarctic Lake Kuetsjärvi, Murmansk region. Russia J Environ Monit 5(2):210–215. https://doi.org/10.1039/b301144p

    Article  Google Scholar 

  • Dobrovol’skiy VV (1990) Spitsbergen soils geochemistry. Pochvovedenie 2:5–20 (In Russian)

    Google Scholar 

  • Ermolin MS, Fedotov PS, Ivaneev AI et al (2018) A contribution of nanoscale particles of road-deposited sediments to the pollution of urban runoff by heavy metals. Chemosphere 210:65–75. https://doi.org/10.1016/j.chemosphere.2018.06.150

    Article  Google Scholar 

  • Eyrikh S, Shol L, Shinkaruk E (2022) Assessment of mercury concentrations and fluxes deposited from the atmosphere on the territory of the Yamal-Nenets autonomous area. Atmosphere 13(1):37. https://doi.org/10.3390/atmos13010037

    Article  Google Scholar 

  • Falk M (1997) On mad and comedians. Ann Inst Stat Math 49(4):615–644

    Article  Google Scholar 

  • Fedotov PS, Ermolin MS, Ivaneev AI, Fedyunina NN, Karandashev VK, Tatsy YG (2016) Continuous-flow leaching in a rotating coiled column for studies on the mobility of toxic elements in dust samples collected near a metallurgic plant. Chemosphere 146:371e378. https://doi.org/10.1016/j.chemosphere.2015.11.124

    Article  Google Scholar 

  • Gale AD, Dalton CA, Langmuir CH, Su Y, Schilling J (2013) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14:489–518. https://doi.org/10.1029/2012GC004334

    Article  Google Scholar 

  • Gulińska J, Rachlewicz G, Szczucinski W et al (2003) Soil contamination in high arctic areas of human impact, central Spitsbergen, Svalbard. Pol J Environ Stud 12:701–707

    Google Scholar 

  • Gutiérrez JM, Jones RG, Narisma GT et al (2021) Atlas. In climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Available from http://interactive-atlas.ipcc.ch/

  • Halbach K, Mikkelsen O, Berg T et al (2017) The presence of mercury and other trace metals in surface soils in the Norwegian arctic. Chemosphere 188:567–574

    Article  Google Scholar 

  • Hao ZL, Wang F, Yang HZ (2013) Baseline values for heavy metals in soils on Ny-Alesund, Spitsbergen Island, arctic: the extent of anthropogenic pollution. Adv Mater Res 779:1260–1265. https://doi.org/10.4028/www.scientific.net/AMR.779-780.1260

    Article  Google Scholar 

  • Headley AD (1996) Heavy metal concentrations in peat profiles from the high arctic. Sci Total Environ 177:105–111

    Article  Google Scholar 

  • Helsel DR (1990) Less than obvious - statistical treatment of data below the detection limit. Environ Sci Technol 24(12):1766–1774. https://doi.org/10.1021/es00082a001

    Article  Google Scholar 

  • Hudson LN, Newbold T, Contu S, Hill SL, Lysenko I, de Palma A, Booth H (2017) The database of the PREDICTS (projecting responses of ecological diversity in changing terrestrial systems) project. Ecol Evol 7(1):145–188

    Article  Google Scholar 

  • IUSS (2015) IUSS working group WRB. World reference base for soil resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, FAO, Rome

  • Ji X, Abakumov E, Antcibor I, Tomashunas V, Knoblauch C, Zubzycki S, Pfeiffer EM (2019) Influence of anthropogenic activities on metals in arctic permafrost: a characterization of benchmark soils on the Yamal and Gydan peninsulas in Russia. Arch Environ Contam Toxicol 76(4):540–553. https://doi.org/10.1007/s00244-019-00607-y

    Article  Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soils and plants, fourth. Taylor and Francis Group, LLC, Boka Raton, FL. https://doi.org/10.1201/b10158

    Book  Google Scholar 

  • Karandashev VK, Turanov AN, Orlova TA et al (2008) Use of the inductively coupled plasma mass spectrometry for element analysis of environmental objects. Inorg Mater 44:1491–1500. https://doi.org/10.1134/S0020168508140045

    Article  Google Scholar 

  • Karyakin YV, Shipilov EV (2009) Geochemical specifics and 40Ar/39Ar age of the basaltoid magmatism of the Alexander Land, Northbrook, Hooker, and Hayes islands (Franz Josef Land Archipelago). Dokl Earth Sci 425:260–263. https://doi.org/10.1134/S1028334X09020196

    Article  Google Scholar 

  • Karyakin YV, Sklyarov EV, Travin AV, Shipilov EV (2009) Substance parameters of plume volcanism in the Franz Josef Land archipelago. In: Gordeev EI (Ed) Materials of the IV Russian Symposium on Volcanology and Paleovolcanology. September 22–27, 2009 Russia, Kamchatka Territory. Volume 1, 2. Petropavlovsk-Kamchatsky, 2009, pp 371–373 (In Russian)

  • Kaverin DA, Pastukhov AV, Majtova GG (2014) Temperature regime of the tundra soils and underlaying permafrost (Northeast European Russia). Kriosfera Zemli 18(3):23–31

    Google Scholar 

  • Kondrat'eva KA (1980) Permafrost conditions of Franz Josef Land. In: Kudryavtsev VA (ed) Merzlotnyye issledovanija, Isssue 9, pp 76–101 (In Russian)

  • Kozak K, Polkowska Z, Ruman M, Kozioł K, Namiesnik J (2013) Analytical studies on the environmental state of the Svalbard archipelago - critical source of information about anthropogenic global impact. Trends Anal Chem 50:107–126

    Article  Google Scholar 

  • Kozak K, Polkowska Ż, Stachnik Ł et al (2016) Arctic catchment as a sensitive indicator of the environmental changes: distribution and migration of metals (Svalbard). Int J Environ Sci Technol 13:2779–2796. https://doi.org/10.1007/s13762-016-1137-6

    Article  Google Scholar 

  • Krajcarová L, Novotny K, Chattova B, Elster J (2016) Elemental analysis of soils and Salix polaris in the town of Pyramiden and its surroundings (Svalbard). Environ Sci Pollut Res 23:10124–10137. https://doi.org/10.1007/s11356-016-6213-4

    Article  Google Scholar 

  • Krivolutskaya NA, Kedrovskaya TB (2020) Structure and composition of the Nadayansky Lava flow: an example of the homogeneity of Lava flows of the Siberian Trap Province. Geochem Int 58:363–376. https://doi.org/10.1134/S0016702920040047

    Article  Google Scholar 

  • Krupskaya VV, Miroshnikov AY, Dorzhieva OV et al (2017) Mineral composition of soils and bottom sediments in bays of Novaya Zemlya. Oceanology 57(1):215–221. https://doi.org/10.7868/S0030157417010075

    Article  Google Scholar 

  • Kryauchyunas VV, Iglovsky SA, Shakhova EV, Malkov AV (2014) Heavy metals in the arctic soils of the western coast of Svalbard archipelago. Ecologiya Cheloveka 9:8–13 (in Russian)

    Google Scholar 

  • Laverov NP, Velichkin VI, Miroshnikov AY et al (2016) Geochemical and radiation conditions in coastal landscapes of the Kara Sea Gulf (Novaya Zemlya Archipelago). Dokl Earth Sc 467:320–324. https://doi.org/10.1134/S1028334X16030193

    Article  Google Scholar 

  • Łokas E, Zaborska A, Sobota I et al (2019) Airborne radionuclides and heavy metals in high arctic terrestrial environment as the indicators of sources and transfers of contamination. Cryosphere 13:2075–2086. https://doi.org/10.5194/tc-13-2075-2019

    Article  Google Scholar 

  • Lu Z, Cai M, Wang J et al (2012) Baseline values for metals in soils on Fildes Peninsula, King George Island, Antarctica: the extent of anthropogenic pollution. Environ Monit Assess 184(11):7013–7021. https://doi.org/10.1007/s10661-011-2476-x

    Article  Google Scholar 

  • Ma H, Shi G, Cheng Y (2020) Accumulation characteristics of metals and metalloids in plants collected from ny-Ålesund, arctic. Atmosphere 11:1129. https://doi.org/10.3390/atmos11101129

    Article  Google Scholar 

  • Manceau A, Marcus MA, Tamura N (2002) Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. Rev Mineral Geochem 49(1):341–428. https://doi.org/10.2138/gsrmg.49.1.341

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Melke J, Uziak S (2006) Heavy metals in soils and vascular plants of the Bellsund area (Spitsbergen). Polish J Soil Sci 39:151–164

    Google Scholar 

  • Morin G, Ostergren JD, Juillot F, Ildefonse P, Calas G, Brown JE (1999) XAFS determination of the chemical form of lead in smelter-contaminated soils and mine tailings: importance of adsorption process. Am Mineral 84:420–434. https://doi.org/10.2138/am-1999-0327

    Article  Google Scholar 

  • Moskovchenko DV, Kurchatova AN, Fefilov NN, Yurtaev AA (2017) Concentrations of trace elements and iron in the arctic soils of Belyi Island (the Kara Sea, Russia): patterns of variation across landscapes. Environ Monit Assess 189:210. https://doi.org/10.1007/s10661-017-5928-0

    Article  Google Scholar 

  • Nikitin DA, Lysak LV, Mergelov NS et al (2020) Microbial biomass, carbon stocks, and CO2 emission in soils of Franz Josef Land: high-arctic Tundra or Polar deserts? Eurasian Soil Sc 53:467–484. https://doi.org/10.1134/S1064229320040110

    Article  Google Scholar 

  • Ntaflos T, Richter W (2003) Geochemical constraints on the origin of the continental flood basalt magmatism in Franz Josef Land, Arctic Russia. Eur J Mineral 15(4):649–663. https://doi.org/10.1127/0935-1221/2003/0015-0649

    Article  Google Scholar 

  • Nürnberg D, Levitan MA, Pavlidis JA et al (1995) Distribution of clay minerals in surface sediments from the eastern Barents and south-western Kara seas. Geol Rundsch 84:665–682. https://doi.org/10.1007/BF00284528

    Article  Google Scholar 

  • Olson C, Jiskra M, Bieste H, Chow J, Obrist D (2018) Mercury in active-layer tundra soils of Alaska: concentrations, pools, origins, and spatial distribution. Global Biogeochem Cycles 32:1058–1073. https://doi.org/10.1029/2017GB005840

    Article  Google Scholar 

  • Opekunova MG, Opekunov AY, Kukushkin SY, Ganul AG (2019) Background contents of heavy metals in soils and bottom sediments in the north of Western Siberia. Eurasian Soil Sci 52:380–395. https://doi.org/10.1134/S106422931902011X

    Article  Google Scholar 

  • Perelman A, Kasimov N (1999) Landscape geochemistry. Astrea-2000, Moscow (In Russian)

    Google Scholar 

  • Plichta W, Kuczynska I, Sapek A (1991) Profile distribution of metals in Gelic Cambisols of Kaffioyra, Spitsbergen. Pol Polar Res 12(2):195–201

    Google Scholar 

  • Pogojeva MP, Yakushev EV, Petrov IN, Yaeski EA (2021) Experimental study of the permafrost thawing effect on the content of nutrients and heavy metals in seawater during abrasion destruction of the arctic coast. Arctic: Ecol Econ 11(1):67–75. https://doi.org/10.25283/2223-4594-2021-1-67-75 (In Russian)

    Article  Google Scholar 

  • Pokrovsky OS, Schott J, Dupré B (2006) Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basaltic terrain in Central Siberia. Geochim Cosmochim Acta 70(13):3239–3260. https://doi.org/10.1016/j.gca.2006.04.008

    Article  Google Scholar 

  • Pokrovsky OS, Manasypov RM, Kopysov SG, Krickov IV, Shirokova LS, Loiko SV, Lim AG, Kolesnichenko LG, Vorobyev SN, Kirpotin SN (2020) Impact of permafrost thaw and climate warming on riverine export fluxes of carbon, nutrients and metals in Western Siberia. Water 12(6):1817. https://doi.org/10.3390/w12061817

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) Treatise on geochemistry, vol 3. The Crust. Elsevier Science, UK, pp 1–64

    Google Scholar 

  • Safronova IN, Kholod SS, Gavrilo MV, Ezhov ON (2020) Floristic and phytocoenotic diversity of vegetation cover of the Franz Josef Land archipelago. Botanicheskyy Zhurnal 105(2):133–151 (In Russian)

    Google Scholar 

  • Serova NA, Serova VA (2021) Transport infrastructure of the Russian arctic: specifics features and development prospects. Stud Russ Econ Dev 32:214–220. https://doi.org/10.1134/S107570072102009X

    Article  Google Scholar 

  • Shevchenko VP, Pokrovsky OS, Vorobyev SN et al (2017) Impact of snow deposition on major and trace element concentrations and elementary fluxes in surface waters of the Western Siberian lowland across a 1700 km latitudinal gradient. Hydrol Earth Syst Sci 21(11):5725–5746. https://doi.org/10.5194/hess-21-5725-2017

    Article  Google Scholar 

  • Simonov VA, Karyakin YV, Kotlyarov AV (2019) Physical and chemical conditions of basaltic magmatism at the Franz Josef Land archipelago. Geochem Int 57:761–789. https://doi.org/10.1134/S0016702919070103

    Article  Google Scholar 

  • Soloviev AV, Zaionchek AV, Suprunenko OI et al (2015) Evolution of the provenances of Triassic rocks in Franz Josef Land: U/Pb LA-ICP-MS dating of the detrital zircon from Well Severnaya. Lithol Miner Resour 50:102–116. https://doi.org/10.1134/S0024490215020054

    Article  Google Scholar 

  • Sukhodrovskii VL (1970) On the role of glaciers in the origin of the relief of Franz Josef Land. In: Tolmachev AI (ed) The Arctic Ocean and its coast in the Cenozoic. Hydrometeoizdat, Leningrad, pp 57–60 (In Russian)

    Google Scholar 

  • Szymański W, Siwek J, Skiba M et al (2019) Properties and mineralogy of topsoil in the town of Longyearbyen (Spitsbergen, Norway). Polar Rec 55(2):102–114. https://doi.org/10.1017/S0032247419000251

    Article  Google Scholar 

  • Usacheva AA, Semenkov IN, Miroshnikov AYu, Krupskaya VV, Zakusin SV (2016) Geochemical features of arctic tundra landscapes of the Novaya Zemlya eastern coast. Vestnik MGU. Series 5. Geography 6:87–94 (In Russian)

    Google Scholar 

  • Vinogradova AA, Ponomareva TY (2012) Atmospheric transport of anthropogenic impurities to the Russian arctic (1986–2010). Atmos Ocean Opt 25:414–422. https://doi.org/10.1134/S1024856012060127

    Article  Google Scholar 

  • Voitkevich GV, Kokin AV, Miroshnikov AE, Prokhorov VG (1990) Handbook of geochemistry. Nedra, Moscow (In Russian)

    Google Scholar 

  • Vonk JE, Tank SE, Walvoord MA (2019) Integrating hydrology and biogeochemistry across frozen landscapes. Nat Commun 10:5377. https://doi.org/10.1038/s41467-019-13361-5

    Article  Google Scholar 

  • Wang J, Gough WA, Yan J, Lu Z (2022) Ecological risk assessment of trace metal in Pacific sector of Arctic Ocean and Bering strait surface sediments. Int J Environ Res Public Health 19(8):4454. https://doi.org/10.3390/ijerph19084454

    Article  Google Scholar 

  • Wojtun B, Samecka-Cymerman A, Kolon K, Kempers AJ, Skrzypek G (2013) Metals in some dominant vascular plants, mosses, lichens, algae, and the biological soil crust in various types of terrestrial tundra, SW Spitsbergen, Norway. Polar Biol 36:1799–1809

    Article  Google Scholar 

  • Wojtun B, Polechońska L, Pech P et al (2019) Sanionia uncinata and Salix polaris as bioindicators of trace element pollution in the high arctic: a case study at Longyearbyen, Spitsbergen, Norway. Polar Biol 42:1287–1297. https://doi.org/10.1007/s00300-019-02517-0

    Article  Google Scholar 

  • Zaborska A, Beszczyńska-Moller A, Włodarska-Kowalczuk M (2017) History of heavy metal accumulation in the Svalbard area: distribution, origin and transport pathways. Environ Pollut 231:437–450. https://doi.org/10.1016/j.envpol.2017.08.042

    Article  Google Scholar 

  • Zhulidov AV, Headley JV, Robarts RD, Nikanorov AM, Ischenko AA, Champ MA (1997) Concentrations of Cd, Pb, Zn and Cu in pristine wetlands of the Russian arctic. Mar Pollut Bull 35(7):242–251. https://doi.org/10.1016/S0025-326X(98)80013-1

    Article  Google Scholar 

  • Zhulidov AV, Robarts RD, Pavlov DF, Kamari J, Gurtovaya TY, Merilainen JJ, Pospelov IN (2011) Long-term changes of heavy metal and sulphur concentrations in ecosystems of the Taymyr Peninsula (Russian federation) North of the Norilsk industrial complex. Environ Monit Assess 181(1–4):539–553. https://doi.org/10.1007/s10661-010-1848-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Vasiliy Karandashev for the analytical determination of elements. We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

Funding

This research was done under projects No 121041600045–8 and 121041600042–7 of the RAS Siberian Branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Moskovchenko.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The authors declare that all principles of ethical and professional conduct have been followed.

Consent to participate

All authors agreed to participate.

Consent for publication

All authors consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 83 KB)

Supplementary file2 (DOCX 31 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskovchenko, D.V., Babkin, E.M., Pogojeva, M.P. et al. A baseline survey of the geochemical characteristics of the Arctic soils of Alexandra Land within the Franz Josef Land archipelago (Russia). Environ Earth Sci 81, 535 (2022). https://doi.org/10.1007/s12665-022-10658-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10658-5

Keywords

Navigation