Skip to main content

Advertisement

Log in

Environmental fragility of wetland soils in the Cerrado biome: implications for conservation and management

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Understanding the morphological characteristics and the physical and chemical attributes of the soil is fundamental for the conservation of landscapes, especially those with fragile soils. This study aimed to characterize soils representative of the Pandeiros River wetland, in the Cerrado biome, identifying them as to their fragility, through the analysis of morphological, physical and chemical attributes, providing the basis for the development of strategies for conservation and management of these areas. Seven soil profiles located in the lower third of the Pandeiros River basin, formed by sediments of mineral and organic origin, were collected. Soil pits were opened, the profiles were described morphologically, and then soil chemical and physical analyses were performed to characterize soil organic matter. The morphological attributes of the soils were influenced by the type of parent material (organic and mineral) and by the relief and drainage conditions. The studied soils are considered fragile and need special attention regarding their management and conservation. In the study area, soil vulnerability is determined by different factors and can be stratified in decreasing order as follows: Histosols > Gleysols > Fluvisols > Cambisols > Planosols. Despite the different degrees of vulnerability observed in the soil profiles, as all occur in an environment of great environmental importance, the study area requires full protection of its soils and associated vegetation to perpetuate the development of its ecological and environmental functions. Such detailed knowledge on soil attributes is especially important for the maintenance of soil functions. This study significantly contributes to the definition of policies of conservation and protection of wetlands, especially those that are located in conservation units of sustainable use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alvares CA, Stape JL, Sentelhas PC, Moraes GJLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Azevedo IFP, Nunes YRF, Veloso MDM, Neves WV, Fernandes W (2009) Preservação estratégica para recuperar o São Francisco. Sci Am Bras 83:74–9

    Google Scholar 

  • Balesdent J, Wagner GH, Mariotti A (1988) Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance. Soil Sci Soc Am J 52(1):118–124. https://doi.org/10.2136/sssaj1988.03615995005200010021x

    Article  Google Scholar 

  • Bayer C, Martin-Neto L, Mielniczuk J, Pavinato A, Dieckow J (2006) Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil Tillage Res 86(2):237–245. https://doi.org/10.1016/j.still.2005.02.023

    Article  Google Scholar 

  • Beaudette DE, Roudier P, O’geen AT (2013) Algorithms for quantitative pedology: a toolkit for soil scientists. Comput Geosci 52:258–268. https://doi.org/10.1016/j.cageo.2012.10.020

    Article  Google Scholar 

  • Benner R, Fogel ML, Sprague EK, Hodson RE (1987) Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature 329(6141):708–710

    Article  Google Scholar 

  • Boutton TW, Archer SR, Midwood AJ, Zitzer SF, Bol R (1998) δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma 82(1–3):5–41

    Article  Google Scholar 

  • Castro SS, Hernani C (2015) Solos frágeis: caracterização, manejo e sustentabilidade. Embrapa

    Google Scholar 

  • Cipriano-Silva R, Valladares GS, Azevedo AC, Anjos LHC, Pereira MG, Pinheiro CR Jr (2020) Alluvial soil formation in the plains of northeastern Brazil. Rev Bras Cienc Solo 44:1–18. https://doi.org/10.36783/18069657rbcs20190110

    Article  Google Scholar 

  • Coringa EDAO, Couto EG, Otero Perez XLO, Torrado PV (2012a) Atributos de solos hidromórficos no Pantanal Norte Matogrossense. Acta Amazon 42(1):19–28. https://doi.org/10.1590/S0044-59672012000100003

    Article  Google Scholar 

  • Coringa EAO, Couto EG, Perez XLO, Torrado PV (2012b) Atributos de solos hidromórficos no Pantanal Norte Matogrossense. Acta Amazon 42(1):19–28. https://doi.org/10.1590/S0044-59672012000100003

    Article  Google Scholar 

  • Costa EM, Anjos LHC, Pinheiro HSK, Gelsleichter YA, Marcondes RAT (2020) Spatial Bayesian belief networks: a participatory approach for mapping environmental vulnerability at the Itatiaia National Park, Brazil. Environ Earth Sci 79(14):1–13. https://doi.org/10.1007/s12665-020-09099-9

    Article  Google Scholar 

  • Damaceno JBD, Silva WG da, Lima HN, Falcao NP de S, Padilha F de J, Junior AB da C, Martins JKD, Caniato MM, Souza FR de, Brito WBM, Tucci CAF (2020) Physical, chemical, morphological and mineralogical characterization surface and subsurface in hydromorphic and non-hydromorphic soil of the central Amazon. J Agric Sci 12:245

  • Donagemma GK, Freitas PL, Balieiro FC, Fontana A, Spera ST, Lumbreras JF, Viana JH, Araújo Filho JC, Santos FC, Albuquerque MR, Macedo MCM, Teixeira PC, Amaral AJ, Bortolon E, Bortolon L (2016) Characterization, agricultural potential, and perspectives for the management of light soils in Brazil. Pesq Agrop Bras 51(9):1003–1020. https://doi.org/10.1590/S0100-204X2016000900001

    Article  Google Scholar 

  • Durigan G, Munhoz CB, Zakia MJB, Oliveira RS, Pilon NA, do Valle RST, Pott A (2022) Cerrado wetlands: multiple ecosystems deserving legal protection as a unique and irreplaceable treasure. Perspect Ecol Conserv 1:1–12. https://doi.org/10.1016/j.pecon.2022.06.002

    Article  Google Scholar 

  • Farias Filho MS, Bueno CRP, Valladares GS (2020) Caracterização e classificação de solos hidromórficos sobre os aluviões fluviomarinhos no município de Arari–MA. Raega-O Espaço Geográfico Análise 47(1):85–98. https://doi.org/10.5380/raega.v47i1.61912

    Article  Google Scholar 

  • Greb SF, Dimichele WA, Gastaldo RA (2006) Evolution and importance of wetlands in earth history. Geol Soc Am S 399:1–40. https://doi.org/10.1130/2006.2399(01)

    Article  Google Scholar 

  • Horák-Terra I, Terra FDS, Lopes AKA, Dobbss LB, Fontana A, Silva AC, Vidal-Torrado P (2022) Soil characterization and drainage effects in a savanna palm swamp (vereda) of an agricultural area from Central Brazil. Rev Bras Ciência Solo 46:1–28. https://doi.org/10.36783/18069657rbcs20210065

    Article  Google Scholar 

  • Instituto Estadual de Florestas de Minas Gerais-IEF (2019) http://www.ief.mg.gov.br. Accessed in 10 Aug 2022

  • IUSS Working Group WRB (2015) World Reference Base for Soil Resources (WRB), sistema universal reconhecido pela International Union of Soil Science (IUSS) e FAO.

  • Junk WJ, Piedade MTF, Lourival R, Wittmann F, Kandus P, Lacerda LD, Agostinho AA (2013) Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat Conserv Mar Freshwat Ecosyst 24(1):5–22. https://doi.org/10.1002/aqc.2386

    Article  Google Scholar 

  • Kämpf N, Curi N (2012) Formação e evolução do solo (Pedogênese). In: Ker JC, Shaefer CEGR, Vidal-Torrado P (eds) Pedologia: fundamentos. Sociedade Brasileira de Ciência do Solo. Viçosa, p 207–302

  • Lal R (1997) Degradation and resilience of soils. Philos Trans R Soc 352:997–1010. https://doi.org/10.1098/rstb.1997.0078

    Article  Google Scholar 

  • Lorenz K, Lal R, Ehlers K (2019) Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ Sustainable Development Goals. Land Degrad Dev 30(7):824–838. https://doi.org/10.1002/ldr.3270

    Article  Google Scholar 

  • Luciano RV, Albuquerque JA, Costa A, Batistella B, Warmling MT (2012) Atributos físicos relacionados à compactação de solos sob vegetação nativa em região de altitude no sul do Brasil. Rev Bras Ciênc Solo 36(6):1733–1744. https://doi.org/10.1590/S0100-06832012000600007

    Article  Google Scholar 

  • Maechler M (2019) Finding groups in data: Cluster analysis extended Rousseeuw et al. R package version, 2(0)

  • Magalhães TL, Bortoluzzi RLC, Mantovani A (2013) Levantamento florístico em três áreas úmidas (banhados) no Planalto de Santa Catarina, Sul do Brasil. Rev Bras Bioci 11(3):269–279

    Google Scholar 

  • Martynov AV (2020) Influence of the large flood on the element composition of fluvisols in the Amur River valley. Geogr Environ Sustain 13(2):52–64. https://doi.org/10.24057/2071-9388-2019-03

    Article  Google Scholar 

  • McLatchey GP, Reddy KR (1998) Regulation of organic matter decomposition and nutrient release in a wetland soil. Soil Sci Soc Am 27(5):1268–1274

    Google Scholar 

  • Mielniczuk J, Lopes AAC, Souza DMG, Mendes IC (2003) Manejo de solos e culturas e sua relação com os estoques de carbono e nitrogênio do solo. Tópicos Ciência Solo 3:209–248

    Google Scholar 

  • Moreira CP, Bertini SCB, Ferreira AS, Azevedo LCB (2021) Biochemical activity and microbial biomass in wetlands (Vereda) and well-drained soils under native vegetation types in Brazilian Cerrado. Appl Soil Ecol 160:103840

    Article  Google Scholar 

  • Pinheiro HSK, Chagas CDS, Carvalho Júnior WD, Anjos LHCD (2016) Ferramentas de pedometria para caracterização da composição granulométrica de perfis de solos hidromórficos. Pesq Agrop Bras 51(9):1326–1338. https://doi.org/10.1590/s0100-204x2016000900032

    Article  Google Scholar 

  • Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: science and applications. CRC Press

    Book  Google Scholar 

  • Rezende RS, Graça MAS, Dos Santos AM, Medeiros AO, Santos PF, Nunes YR, Gonçalves Júnior JF (2016) Organic matter dynamics in a tropical gallery forest in a grassland landscape. Biotropica 48(3):301–310. https://doi.org/10.1111/btp.12308

    Article  Google Scholar 

  • Rosolen V, De-Campos AB, Govone JS, Rocha C (2015) Contamination of wetland soils and floodplain sediments from agricultural activities in the Cerrado Biome (State of Minas Gerais, Brazil). CATENA 128:203–210. https://doi.org/10.1016/j.catena.2015.02.007

    Article  Google Scholar 

  • Santos RD, Santos HG, Ker JC, Anjos LHC, Shimizu SH (2015) Manual de descrição e coleta de solo no campo, 7ª. SBCS

    Google Scholar 

  • Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JA, Cunha TJF, Oliveira JB (2018) Sistema Brasileiro de Classificação de Solos, 3rd edn. Embrapa

    Google Scholar 

  • Santos OAQ, Silva Neto EC, Garcia AC, Fagundes HS, Diniz YVFG, Ferreira R, Pereira MG (2020) Impact of land use on Histosols properties in urban agriculture ecosystems of Rio de Janeiro Brazil. Rev Bras Ciência Solo 44:1–22. https://doi.org/10.36783/18069657rbcs20200041

    Article  Google Scholar 

  • Santos GL, Pereira MG, Delgado RC, Magistrali IC, Da Silva CG, De Oliveira CMM, Teodoro PE (2020b) Anthropogenic and climatic influences in the swamp environment of the Pandeiros River basin, Minas Gerais-Brazil. Environ Monit Assess 192(4):1–11. https://doi.org/10.1007/s10661-020-8192-7

    Article  Google Scholar 

  • Schiavo JA, Pereira MG, Miranda LPMD, Neto DHA, Fontana A (2010) Caracterização e classificação de solos desenvolvidos de arenitos da formação Aquidauana-MS. Rev Bras Ciênc Solo 34(3):881–889. https://doi.org/10.1590/S0100-06832010000300029

    Article  Google Scholar 

  • Silva Neto LF, Inda AV, Nascimento PC, Giasson E, Schmitt C, Curi N (2015) Characterization and classification of floodplain soils in the Porto Alegre metropolitan region, RS, Brazil. Ciência Agrotecnol 39(5):423–434. https://doi.org/10.1590/S1413-70542015000500001

    Article  Google Scholar 

  • Silva Neto EC, Pereira MG, Carvalho MA, Calegari MR, Schiavo JA, Sa NP, Anjos LHC, Pessenda LCR (2019) Palaeoenvironmental records of Histosol pedogenesis in upland area, Espírito Santo State (SE, Brazil). J S Am Earth Sci 95:1–12. https://doi.org/10.1016/j.jsames.2019.102301

    Article  Google Scholar 

  • Silva Neto EC, Pereira MG, dos Anjos LHC, Calegari MR, Azevedo AC, Schiavo JA, Pessenda LCR (2020) Phytoliths as paleopedological records of an histosol-cambisol-ferralsol sequence in Southeastern Brazil. Catena 193:104642

  • Sobrinho RL, Bernardes MC, Abril G, Kim JH, Zell C, Mortillaro JM, Meziane T, Moreira-Turcq P, Sinninghe Damsté JS (2015) Spatial and seasonal contrasts of sedimentary organic matter in floodplain lakes of the central Amazon basin. Biogeosci Discuss 12(11):8747–8787. https://doi.org/10.5194/bg-13-467-2016

    Article  Google Scholar 

  • Sousa JB, Pierangeli MAP, Serafim ME, De Souza CA (2015a) Atributos morfológicos, físicos e químicos de solos e processos erosivos nas margens do rio Paraguai, Pantanal superior, Mato Grosso, Brasil. Boletim Geografia 33(1):109–122. https://doi.org/10.4025/bolgeogr.v33i1.22580

    Article  Google Scholar 

  • Sousa RF, Brasil EPF, de Figueiredo CC, Leandro WM (2015b) Soil microbial biomass and activity in wetlands located in preserved and disturbed environments in the Cerrado biome. Biosci J 31(4):1049–1061

    Article  Google Scholar 

  • Teixeira PC, Donagemma GK, Fontana A, Teixeira WG (2017) Manual de métodos e análises de solo, 3rd edn. Embrapa, Brasília

    Google Scholar 

  • Tiner RW (2006) Lists of potential hydrophytes for the United States: a regional review and their use in wetland identification. Wetlands 26:624–634

  • Wiesmeier M, Urbanski L, Hobley E, Lang B, Von Luetzow M, Marin-Spiotta E, Wesemael BV, Rabot E, Lieb M, Garcia-Franco N, Wollschlaeger U, Vogel HJ, Kogel-Knabner I (2019) Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales. Geoderma 333:149–162. https://doi.org/10.1016/j.geoderma.2018.07.026

    Article  Google Scholar 

  • Wohlenberg EV, Reichert JM, Reinert DJ, Blume E (2004) Dinâmica da agregação de um solo franco-arenoso em cinco sistemas de culturas em rotação e em sucessão. Rev Bras Ciênc Solo 28:891–900. https://doi.org/10.1590/S0100-06832004000500011

    Article  Google Scholar 

  • Yeomans JC, Bremner JM (1988) A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Sci Plant Anal 19:1467–1476. https://doi.org/10.1080/00103628809368027

    Article  Google Scholar 

Download references

Acknowledgements

To the National Council for Scientific and Technological Development-CNPq for providing the financial support to conduct the study, to the Minas Gerais State Forest Institute—IEF-MG for supporting the research and providing the area; and to the Federal Institute of Northern Minas Gerais—IFNMG for the research partnership.

Funding

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Gervasio Pereira.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, G.L., Delgado, R.C., Costa, E.M. et al. Environmental fragility of wetland soils in the Cerrado biome: implications for conservation and management. Environ Earth Sci 81, 525 (2022). https://doi.org/10.1007/s12665-022-10654-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10654-9

Keywords

Navigation