Skip to main content

Advertisement

Log in

Typical geothermal waters in the Ganzi–Litang fault, western Sichuan, China: hydrochemical processes and the geochemical characteristics of rare-earth elements

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Hydrogeochemical processes and water–rock interactions of a geothermal system are important for understanding of the hydrochemical evolutionary process and genetic mechanisms of the geothermal system. The hydrochemistry, hydrogen and oxygen isotopes, and rare-earth elements (REEs) are discussed to reveal the hydrochemical characteristics and processes of these geothermal systems in Kahui and Gezha geothermal waters in the Ganzi–Litang fault in western Sichuan, China. The results show that the geothermal waters are Na-HCO3 type and influenced by combination of evaporite dissolution and silicate weathering. The isotopic compositions of δ2H and δ18O indicate that the geothermal water is recharged by atmospheric precipitation, and the oxygen isotope drifts in the Gezha geothermal water may be caused by water–rock interactions. The total REE content of the geothermal water is 0.059‒0.547 ug/L, and the REE contents are significantly influenced by pH and HCO3, Na+, and Mn minerals. The chondrite-normalized REE pattern show geothermal water, cold springs, and surrounding rocks are rightward. The fractionation of rare-earth elements is affected by HCO3 complexation reactions, the dissolution of Mn minerals, and alternating cation adsorption. Moreover, the geothermal water exhibited positive Eu anomalies, which may be caused by the dissolution of feldspar minerals in surrounding rocks. In addition, the complexation patterns of REEs in geothermal water and cold springs in the Ganzi–Litang fault mainly include Ln(CO3)2 and LnCO3+, and the changes in the complexation patterns are influenced by the stability constants of complexation reactions and pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Banks D, Hall G, Reimann C, Siewers U (1999) Distribution of rare earth elements in crystalline bedrock groundwaters: Oslo and Bergen regions. Norway Appl Geochem 14(1):27–39

    Article  Google Scholar 

  • Coppin F, Berger G, Bauer A, Caster S, Loubet M (2002) Sorption of lanthanides on smectite and kaolinite. Chem Geol 182(1):57–68

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703

    Article  Google Scholar 

  • Deng J, Wang QF, Li GJ, Li CS, Wang CM (2014) Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region. SW China Gondwana Res 26(2):419–437

    Article  Google Scholar 

  • Dewey JF, Shackleton RM, Chang CF, Sun YY (1988) The tectonic evolution of the Tibetan Plateau. Philos Trans R Soc London 327(1594):379–413

    Article  Google Scholar 

  • Dia A, Gruau G, Olivié-Lauquet G, Riou C, Molénat J, Curmi P (2000) The distribution of rare earth elements in groundwaters: assessing the role of source-rock composition, redox changes and colloidal particles. Geochim Cosmochim Acta 64(24):4131–4151

    Article  Google Scholar 

  • Duvert C, Cendón DI, Raiber M, Seidel J, Cox ME (2015) Seasonal and spatial variations in rare earth elements to identify inter-aquifer linkages and recharge processes in an Australian catchment. Chem Geol 396:83–97

    Article  Google Scholar 

  • Fan LJ, Zou SZ, Xie QL, Lu L, Lin YS, Pei JG (2021) Rare earth element geochemical characteristics of karst groundwater in heqing basin,yunnan province. J chin soc rare earths 39(5):805–815 (in Chinese)

    Google Scholar 

  • Fu GH, Yin JC (2009) A study on the distribution and general mechanism about the hot spring as well as tourism development in Ganzi of Sichuan Province. J Northwest Univ (nat Sci Ed) 1:148–154

    Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allègrea CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159(1–4):3–30

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52(12):2749–2765

    Article  Google Scholar 

  • Göb S, Loges A, Nolde N, Bau M, Jacob DE, Markl G (2013) Major and trace element compositions (including REE) of mineral thermal mine and surface waters in SW Germany and implications for water-rock interaction. Appl Geochem 33:127–152

    Article  Google Scholar 

  • Goldstein SJ, Jacobsen SB (1988) Rare earth elements in river waters. Earth Planet Sci Lett 89(1):35–47

    Article  Google Scholar 

  • Gonzalez RM, Canovas CR, Olías M, Macías F (2020) Rare earth elements in a historical mining district (south–west Spain): hydrogeochemical behaviour and seasonal variability. Chemosphere 253:126742

    Article  Google Scholar 

  • Grimaud D, Huang S, Michard G, Zheng K (1985) Chemical study of geothermal waters of Central Tibet (China). Geothermics 14(1):35–48

    Article  Google Scholar 

  • Gruau G, Dia A, Olivie´-Lauquet G, Davranche M, Pinay G (2004) Controls on the distribution of rare earth elements in shallow groundwaters. Water Res 38(16):3576–3586

    Article  Google Scholar 

  • Guo QH, Wang YX (2012) Geochemistry of hot springs in the Tengchong hydrothermal areas Southwestern China. J Volcanol Geotherm Res 215–216:61–73

    Article  Google Scholar 

  • Guo QH, Wang YX, Liu W (2010a) O H and Sr isotope evidences of mixing processes in two geothermal fluid reservoirs at Yangbajing Tibet China. Environ Earth Sci 59:1589–1597

    Article  Google Scholar 

  • Guo HM, Bc Z, Wang GC, Shen ZL (2010b) Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao Basin Inner Mongolia. Chem Geol 270:117–125

    Article  Google Scholar 

  • Guo QH, Pang ZH, Wang YC, Tian J (2017) Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas. Appl Geochem 81:63–75

    Article  Google Scholar 

  • Guo L, Wang GC, Sheng YZ, Sun XY, Shi ZM, Xu QY, Mu WQ (2020a) Temperature governs the distribution of hot spring microbial community in three hydrothermal fields Eastern Tibetan plateau Geothermal belt Western China. Sci Total Environ 720:137574

    Article  Google Scholar 

  • Guo Y, Wei JC, Gui HR, Zhang Z, Hu MC (2020b) Evaluation of changes in groundwater quality caused by a water inrush event in Taoyuan coal mine China. Environ Earth Sci 79(24):1–15

    Article  Google Scholar 

  • Gustafsson JP (2012) Visual MINTEQ ver. 3.0. Dept of Land and Water Resources Engineering, Stochholm

    Google Scholar 

  • He DF, Zhu WG, Zhong H, Ren T, Bai ZJ, Fan HP (2013) Zircon U-Pb geochronology and elemental and Sr–Nd–Hf isotopic geochemistry of the Daocheng granitic pluton from the Yidun Arc SW China. J Asian Earth Sci 67–68:1–17

    Google Scholar 

  • Henderson P (1984) General geochemical properities and abundances of rare earth elements. In: Geochemistry REE (ed) Henderson P. Elsevier, Amsterdam, pp 1–32

    Google Scholar 

  • Huang SY (1993) In: Hot spring resources in China (explanation of the distribution map of hot springs in China 1:6000000). China Cartographic Publishing House, Beijing, pp 1–21

    Google Scholar 

  • Huang S (2012) Geothermal energy in China. Nat Clim Change 2:557–560

    Article  Google Scholar 

  • Johannesson KH, Stetzenbach KJ, Hodge VF (1997) Rare earth elements as geochemical tracers of regional groundwater mixing. Geochim Cosmochim Acta 61(17):3605–3618

    Article  Google Scholar 

  • Jolie E, Scott S, Faulds J, Chambefort I, Axelsson G, Gutiérrez-Negrín LC, Regenspurg S, Ziegler M, Ayling B, Richter A, Zemedkun MT (2021) Geological controls on geothermal resources for power generation. Nat Rev Earth Environ 2:324–339

    Article  Google Scholar 

  • Kong YL, Wang K, Li J, Pang ZH (2019) Stable isotopes of precipitation in China: a consideration of moisture sources. Water 11(6):1239

    Article  Google Scholar 

  • Kynicky J, Smith MP, Xu C (2012) Diversity of rare earth deposits: the key example of China. Elements 8(5):361–367

    Article  Google Scholar 

  • Lee SG, Lee DH, Kim Y, Chae BG, Kim WY, Woo NC (2003) Rare earth elements as indicators of groundwater environment changes in a fractured rock system: evidence from fracture-filling calcite. Appl Geochem 18(1):135–143

    Article  Google Scholar 

  • Lewis AJ, Palmer MA, Sturchio NC, Kemp AJ (1997) The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA. Geochim Cosmochim Acta 61(4):695–706

    Article  Google Scholar 

  • Leybourne MI, Goodfellow WD, Boyle DR, Hall GM (2000) Rapid development of negative Ce anomalies in surface waters and contrasting REE patterns in groundwaters associated with Zn−Pb massive sulphide deposits. Appl Geochem 15(6):695–723

    Article  Google Scholar 

  • Li X, Huang X, Liao X, Zhang YH (2020) Hydrogeochemical characteristics and conceptual Model of the geothermal waters in the Xianshuihe fault zone Southwestern China. Int J Environ Res Public Health 17(2):500

    Article  Google Scholar 

  • Li JX, Zhang L, Ruan CX, Tian GH, Sagoe G, Wang XY (2022) Estimates of reservoir temperatures for non-magmatic convective geothermal systems: insights from the Ranwu and Rekeng geothermal fields western Sichuan Province China. J Hydrol 609:127668

    Article  Google Scholar 

  • Lian YL, Cao XZ, Zhang HA, Hu XP (2010) REE geochemical characteristics of Xiasai Silver-Lead-Zinc DepositSichuan. J Chin Rare Earth Soc 28(6):745–750 (in Chinese)

    Google Scholar 

  • Liu HY, Guo HM, Xing LN, Zhan YH, Li FL, Shao JL, Niu H, Liang X, Li CQ (2016) Geochemical behaviors of rare earth elements in groundwater along a flow path in the North China Plain. J Asian Earth Sci 117:33–51

    Article  Google Scholar 

  • Liu HY, Guo HM, Pourret O, Wang Z, Sun ZX, Zhang WM, Liu MH (2021) Distribution of rare earth elements in sediments of the North China Plain: a probe of sedimentation process. Appl Geochem 134:105089

    Article  Google Scholar 

  • Liu Z, Deng Z, He G, Wang HL, Zhang X, Lin J, Qi Y, Liang X (2022) Challenges and opportunities for carbon neutrality in China. Nat Rev Earth Environ 3:141–155

    Article  Google Scholar 

  • Markert B, Zhang D (1991) Natural background concentrations of rare-earth elements in a forest Ecosystem. Sci Total Environ 103(1):27–35

    Article  Google Scholar 

  • Ménager M, Menet C, Petit J, Cathelineau M, Côme B (1992) Dispersion of U Th and REE by water–rock interaction around an intragranitic U-vein Jalerys mine Morvan France. Appl Geochem 7:239–252

    Article  Google Scholar 

  • Metcalfe I (2002) Permian tectonic framework and palaeogeography of SE Asia. J Asian Earth Sci 20(6):551–566

    Article  Google Scholar 

  • Moon S, Huh Y, Qin J, van Pho N (2007) Chemical weathering in the Hong (Red) River basin: rates of silicate weathering and their controlling factors. Geochim Cosmochim Acta 71(6):1411–1430

    Article  Google Scholar 

  • Noack CW, Dzombak DA, Karamalidis AK (2014) Rare earth element distributions and trends in natural waters with a focus on groundwater. Environ Sci Technol 48:4317–4326

    Article  Google Scholar 

  • Pang ZH, Kong YL, Li J, Tian J (2017) An Isotopic geoindicator in the hydrological cycle Procedia. Earth Planet Sci 17:534–537

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Trans Am Geophys Union 25:914–928

    Article  Google Scholar 

  • Sanada T, Takamatsu N, Yoshiike Y (2006) Geochemical interpretation of long-term variations in rare earth element concentrations in acidic hot spring waters from the Tamagawa geothermal area Japan. Geothermics 35(2):141–155

    Article  Google Scholar 

  • SBGMEDBRGST (Sichuan Bureau of Geology and Mineral Exploration and Development Bureau Regional Geological Survey Team) 1980 Report on the H-47-16 1/200000 regional geological survey of the Yidun area. Bureau of Geology and Mineral Resources of Sichuan (in Chinese)

  • SBGMR (Bureau of geology and mineral resource of Sichuan province) 1991 Regional geology of Sichuan province Beijing: Geological publishing house (in Chinese)

  • Shakeri A, Ghoreyshinia S, Mehrabi B, Delavari M (2015) Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran. J Volcanol Geotherm Res 304:49–61

    Article  Google Scholar 

  • SIGEI (Sichuan institute of geological engineering investigation) 2017 Report on deep hydrogeological investigation in West Sichuan region. Sichuan institute of geological engineering investigation (in Chinese)

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts implications for mantle composition and processes. Geol Soc London Spec Publ 42:313–345

    Article  Google Scholar 

  • Tang J, Johannesson KH (2010) Rare earth adsorptions onto Carrizo sand: Influence of strong solution complexation. Chem Geol 279:120–133

    Article  Google Scholar 

  • Tang XC, Zhang J, Pang ZH, Hu SB, Tian J, Bao SJ (2017) The eastern Tibetan Plateau geothermal belt western China: geology geophysics genesis and hydrothermal system. Tectonophysicsy 717:433–448

    Article  Google Scholar 

  • Tapponnier P (2001) Oblique stepwise rise and growth of the Tibet plateau. Science 294(5547):1671–1677

    Article  Google Scholar 

  • Tapponnier P, Peltzer G, Armijo R (1986) On the mechanics of the collision between India and Asia. Geological Society London Special Publications 19(1):113–157

    Article  Google Scholar 

  • Temizel EH, Gültekin F, Ersoy AF (2020) Major, trace, and rare earth element geochemistry of the Ayder and Ikizdere (Rize, NE Turkey) geothermal waters: constraints for water–rock interactions. Geothermics 86:101810

    Article  Google Scholar 

  • Tian J, Pang ZH, Guo Q, Wang YC, Li J, Huang TM, Kong YL (2018) Geochemistry of geothermal fluids with implications on the sources of water and heat recharge to the Rekeng high-temperature geothermal system in the Eastern Himalayan Syntax. Geothermics 74:92–105

    Article  Google Scholar 

  • Tian J, Pang ZH, Liao DW, Zhou XC (2021) Fluid geochemistry and its implications on the role of deep faults in the genesis of high temperature systems in the eastern edge of the Qinghai Tibet Plateau. Appl Geochem 131:105036

    Article  Google Scholar 

  • Tong W, Liao ZJ, Liu SB, Zhang MT (1986) Present status of research and utilization of geothermal energy in China. Geothermics 15(5–6):623–626

    Google Scholar 

  • Tweed SO, Weaver TR, Cartwright I, Schaefer B (2006) Behavior of rare earth elements in groundwater during flow and mixing in fractured rock aquifers: an example from the Dandenong Ranges southeast Australia. Chem Geol 234(3):291–307

    Article  Google Scholar 

  • Wang MM, Zhou X, Liu Y, Xu HF, Wu YQ, Zhuo LY (2020) Major trace and rare earth elements geochemistry of geothermal waters from the Rehai high-temperature geothermal field in Tengchong of China. Appl Geochem 119:104639

    Article  Google Scholar 

  • Wei SC, Liu F, Zhang W, Zhang HX, Yuan RX, Liao YZ, Yan XX (2022) Geochemical characteristics of rare earth elements in the chaluo hot springs in western Sichuan Province China. Front Earth Sci 10:865322

    Article  Google Scholar 

  • Wood SA (1990) The aqueous geochemistry of rare-earth elements and yttrium: 1 Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem Geol 82:159–186

    Article  Google Scholar 

  • Wood SA (2006) Rare earth element systematics of acidic geothermal waters from the Taupo volcanic zone. New Zealand J Geochem Explor 89(1–3):424–427

    Article  Google Scholar 

  • Xie XJ, Wang YX, Li JX, Su CL, Wu Y, Yu Q, Li MT (2012) Characteristics and implications of rare earth elements in high arsenic groundwater from the Datong basin. Earth Sci J China Univ Geosci 37(2):381–390 ((in Chinese))

    Google Scholar 

  • Yan B, Lin A (2015) Systematic deflection and offset of the Yangtze River drainage system along the strike-slip GanziYushu-Xianshuihe Fault Zone Tibetan Plateau. J Geodyn 87:13–25

    Article  Google Scholar 

  • Yan ZC, Liu GJ, Sun RY, Tang Q, Wu D, Wu B, Zhou CC (2013) Geochemistry of rare earth elements in groundwater from the Taiyuan formation limestone aquifer in the Wolonghu coal mine Anhui province China. J Geochem Explor 135:54–62

    Article  Google Scholar 

  • Yi L, Qi JH, Li X, Xu M, Zhao XY, Zhang Q, Tang YG et al (2021) Geochemical characteristics and genesis of the high-temperature geothermal systems in the north section of the Sanjiang orogenic belt in southeast Tibetan Plateau. J Volcanol Geotherm Res 414:107244

    Article  Google Scholar 

  • Yin XX, Chen LW, Liu YX, Xu DQ, Zeng W (2017) Tracing ground water circulation in deep aquifers by rare earth elements in Suxian-linhuan mining area. J Chin Soc Rare Earths 35(5):632–641 (in Chinese)

    Google Scholar 

  • Zhang YH (2018) Research on genesis and development of the geothermal system in the Kangding-Moxi segment of the Xianshuihe fault. Chengdu University of Technology, Chengdu (in Chinese)

    Google Scholar 

  • Zhang KJ, Zhang YX, Tang X, Xia B (2013) Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision. Earth-Sci Rev 114(3–4):236–249

    Google Scholar 

  • Zhang J, Li WY, Tang XC, Tian J, Wang YC, Guo Q, Pang ZH (2017a) Geothermal data analysis at the high-temperature hydrothermal area in Western Sichuan science. Chin Earth Sci 47(8):899–915

    Google Scholar 

  • Zhang YZ, Replumaz A, Hervé Leloup P, Wang GC, Bernet M, van der Beek P, Paquette JL, Chevalier M (2017b) Cooling history of the Gongga batholith: implications for the Xianshuihe fault and Miocene kinematics of SE Tibet. Earth Planet Sci Lett 465:1–15

    Article  Google Scholar 

  • Zhang YH, Xu M, Li X, Qi JH, Zhang Q, Guo J (2018) Hydrochemical characteristics and multivariate statistical analysis of natural water system: a case study in kangding county southwestern china. Water 10(1):80

    Article  Google Scholar 

  • Zhang W, Wang GL, Xing LX, Li TX, Zhao JY (2019) Geochemical response of deep geothermal processes in the Litang region Western Sichuan. Energy Explor Exploit 37(2):626–645

    Article  Google Scholar 

  • Zhang L, Guo LS, Liu SW, Yang Y, Shi DY (2021) Characteristics of hydrogen and oxygen stable isotopes of hot springs in Xianshuihe-Anninghe fault zone Sichuan Province China. Acta Petrologica Sinica 37(2):589–598 (in Chinese)

    Article  Google Scholar 

  • Zhao JY, Wang GL, Zhang CY, Xing LX, Li M, Zhang W (2021) Genesis of geothermal fluid in typical geothermal fields in Western Sichuan China. Acta Geol Sin (engl Ed) 95(3):873–882

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the grants from the geothermal survey project of the China Geological Survey (Grant No. DD20190128; Grant No. DD20221676) and basic research operations project of the Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences (SK202212).

Funding

This work was supported by Basic Research Operations Project of the Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, under Grant SK202212, and the grants from the geothermal survey project of the China Geological Survey, under Grant Nos. DD20190128 and DD20221676.

Author information

Authors and Affiliations

Authors

Contributions

SW: Drafting the manuscript, analysis and interpretation of data. FL: Acquisition of data. WZ: Analysis and interpretation of data. HZ: Acquisition of data. YL: Participate in mapping. XY: Check the manuscript.

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Liu, F., Zhang, W. et al. Typical geothermal waters in the Ganzi–Litang fault, western Sichuan, China: hydrochemical processes and the geochemical characteristics of rare-earth elements. Environ Earth Sci 81, 538 (2022). https://doi.org/10.1007/s12665-022-10652-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10652-x

Keywords

Navigation