Skip to main content
Log in

Spatial distribution of heavy metals and sources of soil contamination in southern Konya (Turkey): Insights from geochemistry, Pb and Sr–Nd isotope systematics

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This geochemical study reports the concentrations, spatial distributions, and sources of heavy metals in soil samples from southern Konya. The investigation focused on topsoil (0–20 cm; n = 65), two soil profile (20–100 cm; n = 5), bedrock (n = 12) and stream sediment (n = 4) samples. A total of 70 soil samples were collected and in some samples determined to be enriched in Cd (5.38 ppm), Co (86.4 ppm), Cr (342 ppm), Cu (647 ppm), Fe (6.82%), Ni (755 ppm), Mn (2850 ppm), Zn (529 ppm) and As (89.8 ppm) relative to maximum allowable heavy metal concentrations in Turkey’s soil. The heavy metals accumulated and enriched in stream sediments are mainly Cr, Ni, Co. The samples of soil profiles collected from different depths show commonly geogenic and partially anthropogenic effects. According to calculated geoaccumulation index (Igeo), enrichment factor (EF), and contamination factor (Cf) to evaluate possible metal enrichment in soil, the enrichment of heavy metals in the study area shows in the decreasing order of As > Ni > Cd > Co > Cr > Cu > Mn. The topsoil samples have CIA (Chemical Index of Alteration; 4.34–68.27) and CIW (Chemical Index of Weathering; 4.36–74.37) values ranged indicative of low–medium weathering. The 87Sr/86Sr and εNd values ranged from 0.705341 to 0.707491 and − 0.62 to − 4.95 in topsoil samples suggesting their bedrock sources. Lead isotopic data (207Pb/206Pb = 0.816–0.852; 208Pb/206Pb = 2.000–2.242) of the topsoil and profile soil samples show mostly geogenic (natural), partially anthropogenic sources. Ni, Cr, Co, and Cu enrichments in soils and stream sediments are related extremely with weathering of ophiolitic rocks and partially with traffic and agricultural activities (fertilization, irrigation, etc.), while As and Cd enrichments in soils are related commonly with weathering of volcanic rocks and partially with similar human activities. The geochemical results of heavy metals, Pb and Sr–Nd isotope analyses indicate that the most important source of high amounts of As, Cd, Co, Cr, Ni, Cu, Mn in some of soils in southern Konya is dominantly geological materials (natural resources) and rarely human activities (anthropogenic).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamo P, Zampella M (2008) Chemical speciation to assess potentially toxic metals’ (PTMs’) bioavailability and geochemical forms in polluted soils. In: De Vivo B, Belkin HE, Lima A (eds) Environmental geochemistry, site characterization data analysis and case histories. Elsevier, Amsterdam, p 429

    Google Scholar 

  • Aksoy R, Eren Y (2004) The Konya Fault Zone, Selçuk University. J Eng Faculty 19(2):49–60

    Google Scholar 

  • Alloway BJ (1995) Soil processes and the behaviour of metals. In: Alloway BJ (ed) Heavy Metals in Soils, 2nd edn. Blackie Academic and Professional, London, pp 11–37

    Chapter  Google Scholar 

  • Alpaslan M, Frei R, Boztuğ D, Kurt MA, Temel A (2004) Geochemical and Pb-Sr-Nd isotopic constraints indicating an enriched-mantle source for late cretaceous to early tertiary volcanism, central Anatolia. Int Geol Rev 46:1022–1041

    Article  Google Scholar 

  • Andrews S, Sutherland RA (2004) Cu, Pb and Zn contamination in Nuuanu watershed, Oahu. Hawaii Sci Total Environ 324:173–182

    Article  Google Scholar 

  • Asahara Y (1999) 87Sr/86Sr variation in north Pacific sediments: a record of the Milankovitch cycle in the past 3 million years. Earth Planet Sci Lett 171:453–464

    Article  Google Scholar 

  • Ayuso RA, De Vivo B, Rolandi G, Seal RR II, Paone A (1998) Geochemical and isotopic (Nd-Pb-Sr-O) variation bearing on the genesis of volcanic rocks from Vesuvius, Italy. Special issue, Vesuvius. J Volcanol Geoth Res 82:53–78

    Article  Google Scholar 

  • Ayuso RA, Foley NK, Lipfert G (2008) Lead isotopes as monitors of anthropogenic and natural sources affecting the surficial environment. In: De Vivo B, Belkin HE, Lima A (eds) Environmental geochemistry site characterization data analysis and case histories. Elsevier, Amsterdam, p 429

    Google Scholar 

  • Bhattacharya P, Jacks G, Frisbie SH, Smith E, Naidu R, Sarkar B (2002) Arsenic in the environment: a global perspective. In: Sarkar B (ed) Handbook of heavy metals in the environment. Dekker, New York, pp 147–215

    Google Scholar 

  • Bracciali L, Najman Y, Parrish RR, Akhter SH, Millar I (2015) The Brahmaputra tale of tectonics and erosion: early Miocene river capture in the Eastern Himalaya. Earth Planet Sci Lett 415:25–37

    Article  Google Scholar 

  • Brady NC, Weil RR (2002) In the Nature and Properties of Soils 15th edn, Pearson Education, 375–419.

  • Brooks RR (1987) Serpentine and its vegetation. Dioscorides Press, Portland, OR

    Google Scholar 

  • Castorina F, Masi U (2013) REY and Sr-Nd isotopic ratios of aqua regia extracts to assess pedogenic processes and pollution in soils from Ravenna (North Italy), Periodico di Mineralogia, An International Journal of mineralogy, crystallography, geochemistry, ore deposits, petrology, volcanology and applied topics on environment. Archaeom Cult Herit 82(2):331–351

    Google Scholar 

  • Cheng H, Hu Y (2010) Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review. Environ Pollut 158:1134–1146

    Article  Google Scholar 

  • Cheng C-H, Jien S-H, Lizuka Y, Tsai H, Chang Y-H, Hseu Z-Y (2011) Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence. Soil Sci Soc Am J 75:659–668

    Article  Google Scholar 

  • Cicchella D, De Vivo B, Lima A, Albanese S, McGill RAR, Parrish RR (2008) Heavy metal pollution and Pb isotopes in urban soils of Napoli, Italy. Geochem Explor Environ Anal 8:103–112

    Article  Google Scholar 

  • Cicchella D, Giaccio L, Lima A, Albanese S, Cosenza A, Civitillo D, De Vivo B (2014) Assessment of the degree of contamination of top soils in the Sarno river basin, South Italy. Environ Earth Sci 71:5129–5143

    Google Scholar 

  • Cicchella D, Giaccio L, Dinelli E, Albanese S, Lima A, Zuzolo D, Valera P, De Vivo B (2015) GEMAS: Spatial distribution of chemical elements in agricultural and grazing land soil of Italy. J Geochem Explor 154:129–142

    Article  Google Scholar 

  • Coşkun A, Horasan BY, Öztürk A (2021) Heavy metal distribution in stream sediments and potential ecological risk assessment in Konya Northeast region. Environ Earth Sci 80(5):1–18

    Article  Google Scholar 

  • Cuvier A, Pourcelot L, Probst A, Prunier J, Le Roux G (2016) Trace elements and Pb isotopes in soils and sediments impacted by uranium mining. Sci Total Environ 566–567:238–249

    Article  Google Scholar 

  • D’Antonio M, Tilton GR, Civetta L (1995) Petrogenesis of Italian alkaline lavas deduced from Pb-SrNd isotope relationships. In: Basu A, Hart SR (eds) Isotopic studies of crust-mantle evolution. American Geophysical Union, Monograph, pp 253–267

    Google Scholar 

  • Denneman PRJ and Robberse JG (1990) Ecotoxicological risk assessment as a base for development of soil quality criteria. In: Arendt F, Hinsenfeld H, vab den Brink WB (Eds.) Contaminated Soils “90”. Kluwer, Dordrecht, pp 157–164

  • Dube A, Zbytniewski R, Kowalkowski T, Cukrowska E, Buszewski B (2001) Adsorption and migration of heavy metals in soil. Pol J Environ Stud 10(1):1–10

    Google Scholar 

  • Dursun Ş, Önder S (2008) Determination of heavy metal pollution at Mevlana Park (Konya-Turkey) by analysis of soil, grass and cedar tree needles. Asian J Chem 20(5):4092–4100

    Google Scholar 

  • Düzgören-Aydın N, Aydın A, Malpas JG (2002) Re-assessment of chemical weathering indices: case study on pyroclastic rocks of Hong Kong. Eng Geol 63(1–2):99–119

    Article  Google Scholar 

  • Elbaz-Poulichet F, Holliger P, Martin JM, Petit D (1986) Stable lead isotopes ratios in major French rivers and estuaries. Sci Total Environ 54:61–76

    Article  Google Scholar 

  • Fabian C, Reimann C, Fabian K, Birke M, Baritz R, Haslinger E et al (2014) GEMAS: Spatial distribution of the pH of European agricultural and grazing land soil. Appl Geochem 48:207–216

    Article  Google Scholar 

  • Feng H, Han X, Zhang W, Yu L (2004) A preliminary study of heavy metal contamination in Yangtze River intertidal zone due to urbanization. Mar Pollut Bull 49:910–915

    Article  Google Scholar 

  • Feng H, Jiang H, Gao W, Weinstein MP, Zhang QWZ, Yu L, Yuan D, Tao J (2011) Metal contamination in sediments of the western Bohai Bay and adjacent estuaries China. J Environ Manag 92:1185–1197

    Article  Google Scholar 

  • Förstner U (1995) Land contamination by metals—Global scope and magnitude of problem. In: Allen HE, Huang CP, Bailey GW, Bowers AR (eds) ‘Metal speciation and contamination of soil.’ Lewis Publishers, Boca Raton, pp 1–33

    Google Scholar 

  • Garnier J, Quantin C, Guimarães E, Becquer T (2008) Can chromite weathering be a source of Cr in soils? Mineral Mag 72(1):49–53

    Article  Google Scholar 

  • Gilg HA, Lima A, Somma R, Belkin HE, De Vivo B, Ayuso RA (2001) Isotope geochemistry and fluid inclusion study of skarns from Vesuvius. Mineral Petrol 73:145–176

    Article  Google Scholar 

  • Goldberg K, Humayun M (2010) The applicability of the chemical index of alteration as a paleoclimatic indicator: an example from the Permian of the Parana Basin, Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 293:175–183

    Article  Google Scholar 

  • Guo G, Wu F, Xie F, Zhang R (2012) Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. J Environ Sci 24(3):410–418

    Article  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res 14(8):975–1001

    Article  Google Scholar 

  • Hakyemez Y, Elibol E, Umut M, Bakırhan B, Kara İ, Dağıstan H, Metin T, Erdoğan N (1992) Geology of Konya‐Çumra‐Akören; M.T.A. Rep. No: 9449, 73s (unpublished)

  • Hansmann W, Köppel V (2000) Lead-isotopes as tracers of pollutants in soils. Chem Geol 171:123–144

    Article  Google Scholar 

  • Harnois L (1988) The CIW index: a new chemical index of weathering. Sed Geol 55(3–4):319–322

    Article  Google Scholar 

  • Helz GR (1976) Trace element inventory for the northern Chesapeake Bay with emphasis on the influence of man. Geochim Cosmochim Acta 40:573–580

    Article  Google Scholar 

  • Horasan BY, Arık F (2019) Assessing heavy metal pollution in the surface soils of central Anatolia Region of Turkey. Carpathian J Earth Environ Sci 14(1):107–118

    Article  Google Scholar 

  • http://www.mgm.gov.tr. Accessed 2021

  • Kabata-Pendias A (2011) Trace elements in soils and plants, 4th edn. CRC Press, Boca Raton, London, New York

    Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, p 403

    Google Scholar 

  • Kanellopoulos C, Argyraki A, Mitropoulos P (2015) Geochemistry of serpentine agricultural soil and associated groundwater chemistry and vegetation in the area of Atalanti, Greece. J Geochem Explor 158:22–33

    Article  Google Scholar 

  • Köksal S, Göncüoğlu C (2007) Sr and Nd isotopic characteristics of some S-, I- and a-type granitoids from central Anatolia. Turk J Earth Sci 17:111–127

    Google Scholar 

  • Komarek M, Ettler V, Chrastný V, Mihaljevic M (2008) Lead isotopes in environmental studies: a review. Environ Int 34:562–577

    Article  Google Scholar 

  • Komatina MM (2004) Medical geology effects of geological environments on human health. Elsevier, Amsterdam, p 488

    Google Scholar 

  • Kong H, Teng Y, Song L, Wang J, Zhang L (2018) Lead and strontium isotopes as tracers to investigate the potential sources of lead in soil and groundwater: a case study of the Hun River alluvial fan. Appl Geochem 97:291–300

    Article  Google Scholar 

  • Lermi A, Sunkari ED (2020) Geochemistry, risk assessment, and Pb isotopic evidence for sources of heavy metals in stream sediments around the Ulukışla Basin Niğde, Southern Turkey. Turk J Earth Sci 29:1167–1188

    Article  Google Scholar 

  • Li C, Kang S, Wang X, Ajmone-Marsan F, Zhang Q (2008) Heavy metals and rare earth elements (REEs) in soil from the Nam Co Basin. Tibetan Pleteau Environ Geol 53:1433–1440

    Article  Google Scholar 

  • Li C, Yang SY (2010) Is chemical index of alteration a reliable proxy for chemical weathering in global drainage basins? Am J Sci 310:111–127

    Article  Google Scholar 

  • Manta DS, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ 300:229–243

    Article  Google Scholar 

  • McLean JE and Bledsoe BE (1992) Behaviour of metals in soils. Groundwater issue, USEPA, Washington, DC., p 25

  • Ministry of Housing Netherlands (1994) Dutch Intervention Values for Soil Remediation (Report HQ 94–021). Environmental Quality Objectives in the Netherlands, Ministry of Housing, The Hague.

  • MoEF (Ministry of Environment and Forestry) (2005). Regulation on the control of soil pollution of Turkey, Official Newspaper, 25831, 31.05.2005.

  • Monna F, Ben Othman D, Luck JM (1995) Pb isotopes and Pb, Zn and Cd concentrations in the rivers feeding a coastal pond (Thau, southern France): constraints on the origin(s) and flux(es) of metals. Sci Total Environ 166:19–34

    Article  Google Scholar 

  • Monna F, Aiuppa A, Varrica D, Dongarra G (1999) Pb isotopic compositions in lichens and aerosols from Eastern Sicily: insights on the regional impact of volcanoes on the environment. Environ Sci Technol 33:2517–2523

    Article  Google Scholar 

  • Müller G (1969) Index of geoaccumulation in sediments of the Rhine River. GeoJournal 2:108–118

    Google Scholar 

  • Müller G (1986) Schadstoffe in Sedimenten - Sedimente als Schadstoffe. Mitteilungen Der Österreichischen Geologischen Gesellschaft, Umweltgeologie-Band 79:107–126

    Google Scholar 

  • Nakano T (2016) Potential uses of stable isotope ratios of Sr, Nd, and Pb in geological materials for environmental studies. Proc Jpn Acad Ser B 92:167–184

    Article  Google Scholar 

  • Nakano T, Yokoo Y, Nishikawa M, Koyanagi H (2004) Regional Sr–Nd isotopic ratios of soil minerals in northern China as Asian dust fingerprints. Atmos Environ 38:3061–3067

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Okay OS, Özmen M, Güngördü A, Yılmaz A, Yakan SD, Karacık B, Tutak B, Schramm KW (2016) Heavy metal pollution in sediments and mussels: assessment by using pollution indices and metallothionein levels. Environ Monit Assess 188:352

    Article  Google Scholar 

  • Önder S, Dursun S, Gezgin S, Demirbaş A (2007) Determination of Heavy Metal Pollution in Grass and Soil of City Centre Green Areas (Konya, Turkey). Pol J Environ Stud 16(1):145–154

    Google Scholar 

  • Oskierski HC, Sindern S, Lima RFS, Petta RA (2009) Geogenic and anthropogenic lead isotope signatures in the urban environment of Natal (NE-Brazil). Environ Geol 58:1811–1817

    Article  Google Scholar 

  • Oze C, Skinner C, Schroth A (2008) Growing up green on serpentine soils: biogeochemistry of serpentine vegetation in the Central Coast Range of California. Appl Geochem 23(12):3391–3403

    Article  Google Scholar 

  • Özen Y (2021). Heavy metal pollution and geochemical investigation on rocks and soils between Karadiğin - Hatunsaray - Kayhüyük - Boyalı - Yenibahçe (Meram-Konya), Selçuk University Scientific Research Projects Coordination (Project number: 16401124), 60 p.

  • Öztürk A, Arıcı ÖK (2021) Carcinogenic-potential ecological risk assessment of soils and wheat in the eastern region of Konya (Turkey). Environ Sci Pollut Res 28:15471–15484

    Article  Google Scholar 

  • Patyk-Kara NG, Gorelikova NV, Bardeeva EG et al (2001) Mineralogy of placers: modern approaches and solutions. Lithol Min Resour 36:393–405

    Article  Google Scholar 

  • Potter PE, Maynard JB, Depetris PJ (2005) Mud and mudstones. Springer, Berlin, pp 157–174

    Google Scholar 

  • Rajmohan N, Prathapar SA, Jayaprakash M, Nagarajan R (2014) Vertical distribution of heavy metals in soil profile in a seasonally waterlogging agriculture field in Eastern Ganges Basin. Environ Monit Assess 186:5411–5427

    Article  Google Scholar 

  • Reimann C, Filzmoser P, Fabian K, Hron K, Birke M, Demetriade A, Dinelli E, Ladenberger A, Gemas Project Team (2012) The concept of compositional data analysis in practise total major element concentrations in agricultural and grazing land soils of Europe. Sci Total Environ 426:196–210

    Article  Google Scholar 

  • Reimann C, Fabian K, Flem B, Schilling J, Roberts D, Englmaier P (2016) Pb concentrations and isotope ratios of soil O and C horizons in Nord-Trøndelag, central Norway: anthropogenic or natural sources? Appl Geochem 74:56–66

    Article  Google Scholar 

  • Reuter HI, Lado LR, Hengl T, Montanarella L (2008) Continental-scale digital soil mapping using European soil profile data: soil pH. Hamburger Beitrage Zur Physischen Geographie Und Landschaftsokologie 19:91–102

    Google Scholar 

  • Rezza C, Albanese S, Ayuso R, Lima A, Sorvari J, De Vivo, B (2018) Geochemical and Pb isotopic characterization of soil, groundwater, human hair, and corn samples from the Domizio Flegreo and Agro

  • Rodríguez-Eugenio N, McLaughlin M, Pennock D (2018) Soil Pollution: a hidden reality. FAO, Rome, p 142

    Google Scholar 

  • Ryan P (2020) Environmental and Low-temperature Geochemistry, 2nd edn. Wiley Blackwell, Hoboken, p 352

    Google Scholar 

  • Salomons W, Förstner U (1984) Metals in the hydrocycle. Springer Verlag, Berlin

    Book  Google Scholar 

  • Shetaya WH, Marzouk ER, Mohamed EF, Bailey EH, Young SD (2019) Chemical and isotopic fractionation of lead in the surface soils of Egypt. Appl Geochem 106:7–16

    Article  Google Scholar 

  • Sinex SA, Helz GR (1981) Regional geochemistry of trace elements in Chesapeake Bay Sediments. Environ Geol 3:315–323

    Article  Google Scholar 

  • Singh SK, Rai SK, Krishnaswami S (2008) Sr and Nd isotopes in river sediments from the Ganga Basin: sediment provenance and spatial variability in physical erosion. J Geophys Res 113:F03006

    Google Scholar 

  • Solgun E, Horasan BY, Öztürk A (2021) Heavy metal accumulation and potential ecological risk assessment in sediments from the southwestern Konya district (Turkey). Arab J Geosci 14:730

    Article  Google Scholar 

  • Somma R, Ayuso RA, De Vivo B, Rolandi G (2001) Major, trace element and isotope geochemistry (Sr-Nd-Pb) of interplinian magmas from Mt. Somma-Vesuvius (Southern Italy). Mineral Petrol 73:121–143

    Article  Google Scholar 

  • Steinmann M, Stille P (1997) Rare earth element behavior and Pb Sr, Nd Isotope Systematics in a Heavy Metal Contaminated Soil. Appl Geocherm 12:607–623

    Article  Google Scholar 

  • Sturges WT, Barrie LA (1987) Lead-206/207 isotope ratios in the atmosphere of North America as tracers of US and Canadian emissions. Nature 329:144–146

    Article  Google Scholar 

  • Sun J, Yu R, Hu G, Su G, Zhang Y (2018) Tracing of heavy metal sources and mobility in a soil depth profile via isotopic variation of Pb and Sr. CATENA 171:440–449

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Teutsch N, Erel Y, Halicz L, Banin A (2001) Distribution of natural and anthropogenic lead in Mediterranean soils. Geochim Cosmochim Acta 65(17):2853–2864

    Article  Google Scholar 

  • Tóth G, Herman T, Da Silva MR, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety

  • Turan A (2010) Tectono-Stratigraphy of Alakova-Kavak Area (South of Konya). J Fac Eng Arch 25:3

    Google Scholar 

  • Ungureanu T, Iancu GO, Pintilei M, Chicoș MM (2017) Spatial distribution and geochemistry of heavy metals in soils: a case study from the NE area of Vaslui County, Romania. J Geochem Explor 176:20–32

    Article  Google Scholar 

  • Van den Oever F (2000) Aruba—a geochemical baseline study. Neth J Geosci GeoL En Mijnbouw 79(4):467–477

    Article  Google Scholar 

  • Veysseyre AM, Bollhöfer AF, Rosman KJR, Ferrari CP, Boutron CF (2001) Tracing the origin of pollution in French Alpine snow and aerosols using lead isotopic ratios. Environ Sci Technol 35(22):4463–4469

    Article  Google Scholar 

  • Visser JNJ, Young GM (1990) Major element geochemistry and paleoclimatology of the Permo-Carboniferous glacigene Dwyka Formation and post-glacial mudrocks in southern Africa. Palaeogeogr Palaeoclimatol Palaeoecol 81(1):49–57

    Article  Google Scholar 

  • Vural A (2014) Trace/heavy metal accumulation in soil and in the shoots of Acacia Tree Gümüşhane-Turkey. Bull MTA 148:85–106

    Google Scholar 

  • Walraven N, Van Os BJH, Klaver GT, Baker JH, Vriend SP (1997) Trace element concentrations and stable lead isotopes in soils. J Geochem Explor 59(1):47–58

    Article  Google Scholar 

  • Wu W, Xu S, Yang J, Yin HW, Lu H, Zhang K (2010) Isotopic characteristics of river sediments on the Tibetan. Plateau 269(3–4):406–413

    Google Scholar 

  • Yalçın MG, Narin İ, Soylak M (2007) Heavy metal contents of the karasu creek sediments, Niğde, Turkey. Environ Monit Assess 128:351–357

    Article  Google Scholar 

  • Zhang J, Liu CL (2002) Riverine composition and estuarine geochemistry of particulate metals in China—Weathering Features Anthropogenic Impact and Chemical Fluxes Estuarine. Coast Shelf Sci 54:1051–1070

    Article  Google Scholar 

  • Zhu H, Bing H, Yi H, Wu Y, Sun Z (2018) Spatial distribution and contamination assessment of heavy metals in surface sediments of the Caofeidian Adjacent Sea after the Land Reclamation, Bohai Bay Hindawi. J Chem, Article ID 2049353, 13 p

  • Zoller WH, Gladney ES, Gordon GE, Bors, JH (1974) Emissions of trace elements from coal fired power plants. In: Hemphill DD (ed.) Trace substances in environmental health. University of Missouri-Colombia, 8, 167–172

Download references

Acknowledgements

The author wishes to thank Selçuk University (Konya Technical University) for the project supported by the Scientific Research Projects Coordination (Project No: 16401124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeşim Özen.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özen, Y. Spatial distribution of heavy metals and sources of soil contamination in southern Konya (Turkey): Insights from geochemistry, Pb and Sr–Nd isotope systematics. Environ Earth Sci 81, 285 (2022). https://doi.org/10.1007/s12665-022-10359-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10359-z

Keywords

Navigation