Anthony JW, Bideaux RA, Bladh KW, Nichols MC (2000) Handbook of mineralogy. Mineralogical Society of America, Chantilly
Google Scholar
Birchall J, O'Connell TC, Heaton TH, Hedges RE (2005) Hydrogen isotope ratios in animal body protein reflect trophic level. J Anim Ecol 877–881
Bird MI, Boobyer EM, Bryant C et al (2007) A long record of environmental change from bat guano deposits in Makangit Cave, Palawan, Philippines. Earth Environ Sci Trans R Soc Edinb 98(1):59–69. https://doi.org/10.1017/S1755691007000059
Article
Google Scholar
Blaauw M, Christen JA (2011) Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal 6(3):457–474. https://doi.org/10.1214/11-ba618
Article
Google Scholar
Brenner M, Binford MW (1988) Relationships between concentrations of sedimentary variables and trophic state in Florida lakes. Can J Fish Aquat Sci 45(2):294–300. https://doi.org/10.1139/f88-035
Article
Google Scholar
Campbell JW, Waters MN, Rich F (2017) Guano core evidence of palaeoenvironmental change and Woodland Indian inhabitance in Fern Cave, Alabama, USA, from the mid-Holocene to present. Boreas 46(3):462–469. https://doi.org/10.1111/bor.12228
Article
Google Scholar
Chan SC, Misra V (2010) A diagnosis of the 1979–2005 extreme rainfall events in the southeastern United States with isentropic moisture tracing. Mon Weather Rev 138(4):1172–1185
Article
Google Scholar
Choa O, Lebon M, Gallet X et al (2016) Stable isotopes in guano: potential contributions towards palaeoenvironmental reconstruction in Tabon Cave, Palawan, Philippines. Quat Int 416:27–37. https://doi.org/10.1016/j.quaint.2015.12.034
Article
Google Scholar
Cleary DM, Onac BP, Forray FL et al (2016) Effect of diet, anthropogenic activity, and climate on δ15N values of cave bat guano. Palaeogeogr Palaeclimatol Palaeoecol 461:87–97. https://doi.org/10.1016/j.palaeo.2016.08.012
Article
Google Scholar
Cleary DM, Wynn JG, Ionita M et al (2017) Evidence of long-term NAO influence on East-Central Europe winter precipitation from a guano-derived δ 15 N record. Sci Rep UK 7(1):1–8. https://doi.org/10.1038/s41598-017-14488-5
Article
Google Scholar
Cleary DM, Onac BP, Tanţău I et al (2018) A guano-derived δ13C and δ15N record of climate since the Medieval Warm Period in north-west Romania. J Quat Sci 33(6):677–688. https://doi.org/10.1002/jqs.3044
Article
Google Scholar
Cleary DM, Feurdean A, Tanțău I et al (2019) Pollen, δ15N and δ13C guano-derived record of late Holocene vegetation and climate in the southern Carpathians, Romania. Rev Palaeobot Palynol 265:62–75. https://doi.org/10.1016/j.revpalbo.2019.03.002
Article
Google Scholar
Cleaveland MK, Stahle DW, Therrell MD et al (2003) Tree-ring reconstructed winter precipitation and tropical teleconnections in Durango, Mexico. Clim Change 59(3):369–388. https://doi.org/10.1023/A:1024835630188
Article
Google Scholar
Culver DC, Hobbs H III, Christman MC et al (1999) Distribution map of caves and cave animals in the United States. J Cave Karst Stud 61(3):139–140
Google Scholar
Culver DC, Deharveng L, Bedos A et al (2006) The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29(1):120–128. https://doi.org/10.1111/j.2005.0906-7590.04435.x
Article
Google Scholar
Curtis JH, Brenner M, Hodell DA et al (1998) A multi-proxy study of Holocene environmental change in the Maya Lowlands of Peten, Guatemala. J Paleolimnol 19(2):139–159. https://doi.org/10.1023/A:1007968508262
Article
Google Scholar
Delcourt HR (1979) Late Quaternary vegetation history of the eastern Highland Rim and adjacent Cumberland Plateau of Tennessee. Ecol Monogr 49(3):255–280. https://doi.org/10.2307/1942485
Article
Google Scholar
Delcourt PA (1980) Goshen springs: late Quaternary vegetation record for southern Alabama. Ecology 61(2):371–386. https://doi.org/10.2307/1935195
Article
Google Scholar
Delcourt PA, Delcourt HR (1980) Late-Quaternary vegetational dynamics and community stability reconsidered. Quaternary Res 19(2):265–271. https://doi.org/10.1016/0033-5894(83)90010-8
Article
Google Scholar
Donar C, Stoermer EF, Brenner M (2009) The Holocene paleolimnology of Lake Apopka, Florida. Nova Hedwigia 135:57–70
Google Scholar
Dumitraş DG, Marincea Ş, Diaconu G (2002) Leucophosphate and taranakite in the bat-guano deposit from Lazulai Cave (Mehedinţi Mountains). Rom J Miner Depos 80:23–25
Google Scholar
Dumitraş DG, Marincea Ş, Fransolet AM (2004) Brushite in the bat guano deposit from the “dry” Cioclovina Cave (Sureanu Mountains, Romania). Neues Jb Miner Abh 180(1):45–64
Article
Google Scholar
Elsner JB, Tsonis AA (1993) Nonlinear dynamics established in the ENSO. Geophys Res Lett 20(3):213–216. https://doi.org/10.1029/93GL00046
Article
Google Scholar
Filley TR, Freeman KH, Bianchi T et al (2001) An isotopic biogeochemical assessment of shifts in organic matter input to Holocene sediments from Mud Lake, Florida. Org Geochem 32(9):1153–1167. https://doi.org/10.1016/S0146-6380(01)00063-8
Article
Google Scholar
Fiore S, Laviano R (1991) Brushite, hydroxylapatite, and taranakite from Apulian caves (southern Italy): new mineralogical data. Am Miner 76(9–10):1722–1727
Google Scholar
Folland CK, Karl TR, Vinnikov KY (1990) Observed climate variations and change. Clim Change IPCC Sci Assess 195:238
Google Scholar
Forray FL, Onac BP, Tanţău I et al (2015) A Late Holocene environmental history of a bat guano deposit from Romania: an isotopic, pollen and microcharcoal study. Quat Sci Rev 127:141–154. https://doi.org/10.1016/j.quascirev.2015.05.022
Article
Google Scholar
Frey DG (1953) Regional aspects of the late-glacial and post-glacial pollen succession of southeastern North Carolina. Ecol Monogr 23(3):289–313. https://doi.org/10.2307/1943595
Article
Google Scholar
Frost RL, Palmer SJ (2011) Thermal stability of the ‘cave’mineral brushite CaHPO4· 2H2O—mechanism of formation and decomposition. Thermochim Acta 521(1–2):14–17. https://doi.org/10.1016/j.tca.2011.03.035
Article
Google Scholar
Gallant LR, Grooms C, Kimpe LE, Smol JP, Bogdanowicz W, Stewart RS, Clare EL, Fenton MB, Blais JM (2020) A bat guano deposit in Jamaica recorded agricultural changes and metal exposure over the last > 4300 years. Palaeogeogr Palaeocl 538:109470
Article
Google Scholar
Geantă A, Tanţău I, Tămaş T (2012) Palaeoenvironmental information from the palynology of an 800 year old bat guano deposit from Măgurici Cave, NW Transylvania (Romania). Rev Palaeobot Palynol 174:57–66. https://doi.org/10.1016/j.revpalbo.2011.12.009
Article
Google Scholar
Giurgiu A, Tămaş T (2013) Mineralogical data on bat guano deposits from three Romanian caves. Stud UBB Geol 58(2):13–18. https://doi.org/10.5038/1937-8602.58.2.2
Article
Google Scholar
Goman M, Leigh DS (2004) Wet early to middle Holocene conditions on the upper Coastal Plain of North Carolina, USA. Quat Res 61(3):256–264. https://doi.org/10.1016/j.yqres.2004.02.007
Article
Google Scholar
Gotvald AJ, McCallum BE (2010) Epic flooding in Georgia, 2009. US Geological Survey Fact Sheet 3107
Grimm EC, Jacobson GL (1992) Fossil-pollen evidence for abrupt climate changes during the past 18,000 years in eastern North America. Clim Dyn 6(3–4):179–184. https://doi.org/10.1007/BF00193530
Article
Google Scholar
Grimm EC, Jacobson GL, Watts WA et al (1993) A 50,000-year record of climate oscillations from Florida and its temporal correlation with the Heinrich events. Science 261(5118):198–200. https://doi.org/10.1126/science.261.5118.198
Article
Google Scholar
Gröcke DR, Schimmelmann A, Elias S et al (2006) Stable hydrogen-isotope ratios in beetle chitin: preliminary European data and re-interpretation of North American data. Quat Sci Rev 25(15–16):1850–1864. https://doi.org/10.1016/j.quascirev.2006.01.021
Article
Google Scholar
Hill CA, Forti P, Shaw TR (1997) Cave minerals of the world. National speleological society, Huntsville, p 238
Google Scholar
Hodell DA, Brenner M, Kanfoush SL et al (1999) Paleoclimate of Southwestern China for the past 50,000 yr Inferred from Lake Sediment records. Quat Res 52(3):369–380. https://doi.org/10.1006/qres.1999.2072
Article
Google Scholar
Hubbard DA Jr (2019) Saltpeter mining. Encyclopedia of caves. Elsevier, pp 885–888
Chapter
Google Scholar
Katz RW, Parlange MB, Tebaldi C (2003) Stochastic modeling of the effects of large-scale circulation on daily weather in the southeastern U.S. climatic change. Issues in the impacts of climate variability and change on agriculture. Clim Change 60:189–216
Article
Google Scholar
Koster RD, Dirmeyer PA, Guo Z et al (2004) Regions of strong coupling between soil moisture and precipitation. Science 305:1138–1140. https://doi.org/10.1126/science.1100217
Article
Google Scholar
Kushnir Y, Seager R, Ting MF et al (2010) Mechanisms of tropical Atlantic SST influence on North American precipitation variability. J Clim 23:5610–5628. https://doi.org/10.1175/2010JCLI3172.1
Article
Google Scholar
LaMoreaux HK, Brook GA, Knox JA (2009) Late Pleistocene and Holocene environments of the Southeastern United States from the stratigraphy and pollen content of a peat deposit on the Georgia Coastal Plain. Palaeogeogr Palaeoclim Palaeoecol 280(3–4):300–312. https://doi.org/10.1016/j.palaeo.2009.06.017
Article
Google Scholar
Larson G, Schaetzl R (2001) Origin and evolution of the Great Lakes. J Great Lakes Res 27(4):518–546. https://doi.org/10.1016/S0380-1330(01)70665-X
Article
Google Scholar
Leigh DS (2008) Late Quaternary climates and river channels of the Atlantic Coastal Plain, Southeastern USA. Geomorphology 101(1–2):90–108. https://doi.org/10.1016/j.geomorph.2008.05.024
Article
Google Scholar
Li W, Li L (2011) Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J Clim 24(5):1499–1506. https://doi.org/10.1175/2010JCLI3829.1
Article
Google Scholar
Li L, Li W, Barros AP (2013) Atmospheric moisture budget and its regulation of the summer precipitation variability over the Southeastern United States. Clim Dyn 41(3–4):613–631. https://doi.org/10.1007/s00382-013-1697-9
Article
Google Scholar
Maher LJ (2006) Environmental information from guano palynology of insectivorous bats of the central part of the United States of America. Paleogeogr Paleoclim Palaeoecol 237(1):19–31. https://doi.org/10.1016/j.palaeo.2005.11.026
Article
Google Scholar
Manuel J (2008) Drought in the southeast: lessons for water management. Environ Health Perspect 116:A168–A171. https://doi.org/10.1289/ehp.116-a168
Article
Google Scholar
Marcott SA, Shakun JD, Clark PU et al (2013) A reconstruction of regional and global temperature for the past 11,300 years. Science 339(6124):1198–1201. https://doi.org/10.1126/science.1228026
Article
Google Scholar
Marincea Ş, Dumitraş DG, Diaconu G et al (2004) Mineralogical data on the bat guano deposit from Gura Ponicovei Cave (Almaj Mountains, Romania). Rom J Earth Sci 8:126–129
Google Scholar
Martinez CJ, Baigorria GA, Jones JW (2009) Use of climate indices to predict corn yields in southeast USA. Int J Climatol 29:1680–1691. https://doi.org/10.1002/joc.1817
Article
Google Scholar
McFarlane DA, Lundberg J, Fincham AG (2002) A late Quaternary paleoecological record from caves of southern Jamaica, West Indies. J Cave Karst Stud 64(2):117–125
Google Scholar
Medina-Elizalde M, Rohling EJ (2012) Collapse of Classic Maya civilization related to modest reduction in precipitation. Science 335(6071):956–959. https://doi.org/10.1126/science.1216629
Article
Google Scholar
Mendieta KL, Gerber S, Brenner M (2018) Florida wildfires during the hc optimum (9000–5000 cal yr BP). J Paleolimnol 60(1):1–16. https://doi.org/10.1007/s10933-018-0023-2
Article
Google Scholar
Mizutani H, McFarlane DA, Kabaya Y (1992a) Nitrogen and carbon isotope study of bat guano core from Eagle Creek Cave, Arizona, USA. J Mass Spectrom Soc Jpn 40(1):57–65. https://doi.org/10.5702/massspec.40.57
Article
Google Scholar
Mizutani H, McFarlane DA, Kabaya Y (1992b) Carbon and nitrogen isotopic signatures of bat guanos as record of past environments. J Mass Spectro Soc Jpn 40(1):67–82. https://doi.org/10.5702/massspec.40.67
Article
Google Scholar
Onac BP, Forti P (2011) Minerogenetic mechanism occurring in the cave environment: an overview. Int J Speleol 40(2):79–98. https://doi.org/10.5038/1827-806X.40.2.1
Article
Google Scholar
Onac BP, Kearns J, Breban R, Pânzaru SC (2004) Variscite (AlPO 42H2O) from Cioclovina Cave (Sureanu Mountains, Romania): a tale of a missing phosphate. Stud UBB Geol 49(1):3–14
Article
Google Scholar
Onac BP, Forray FL, Wynn JG et al (2014) Guano-derived δ 13 C-based paleo-hydroclimate record from Gaura cu Musca Cave, SW Romania. Environ Earth Sci 71(9):4061–4069. https://doi.org/10.1007/s12665-013-2789-x
Article
Google Scholar
Onac BP, Hutchinson SM, Geantă A et al (2015) A 2500-yr late Holocene multi-proxy record of vegetation and hydrologic changes from a cave guano-clay sequence in Sw Romania. Quat Res 83(3):437–448. https://doi.org/10.1016/j.yqres.2015.01.007
Article
Google Scholar
Peters JM, Wolf N, Stricker CA et al (2012) Effects of trophic level and metamorphosis on discrimination of hydrogen isotopes in a plant-herbivore system. PLoS ONE 7(3):e32744. https://doi.org/10.1371/journal.pone.0032744
Article
Google Scholar
Schimmelmann A, DeNiro MJ (1986) Stable isotopic studies on chitin. III. The D/H and 18O/16O ratios in arthropod chitin. Geochim Cosmochim Acta 50(7):1485–1496. https://doi.org/10.1016/0016-7037(86)90322-4
Article
Google Scholar
Schubert S, Gutzler D, Wang H et al (2009) A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: overview and results. J Clim 22:5251–5272. https://doi.org/10.1175/2009JCLI3060.1
Article
Google Scholar
Seager R, Harnik N, Kushnir Y (2003) Mechanisms of hemispherically symmetric climate variability. J Clim 16(18):2960–2978. https://doi.org/10.1175/1520-0442(2003)016%3C2960:MOHSCV%3E2.0.CO;2
Article
Google Scholar
Shahack-Gross R, Francesco B, Panagiotis K et al (2004) Bat guano and preservation of archaeological remains in cave sites. J Archaeol 31(9):1259–1272. https://doi.org/10.1016/j.jas.2004.02.004
Article
Google Scholar
Stahle DW, D’Arrigo RD, Krusic PJ et al (1998) Experimental dendroclimatic reconstruction of the Southern Oscillation. Bull Am Meteorol Soc 79(10):2137–2152. https://doi.org/10.1175/1520-0477(1998)079%3C2137:EDROTS%3E2.0.CO;2
Article
Google Scholar
Stahle DW, Edmondson JR, Howard IM et al (2019) Longevity, climate sensitivity, and conservation status of wetland trees at Black River, North Carolina. Environ Res Commun 1(4):041002. https://doi.org/10.1088/2515-7620/ab0c4a
Article
Google Scholar
Tanner BR, Lane CS, Martin EM et al (2015) Sedimentary proxy evidence of a mid-Holocene hypsithermal event in the location of a current warming hole, North Carolina, USA. Quat Res 83(2):315–323. https://doi.org/10.1016/j.yqres.2014.11.004
Article
Google Scholar
Therrell MD, Stahle DW, Diaz JV et al (2006) Tree-ring reconstructed maize yield in central Mexico: 1474–2001. Clim Change 74(4):493. https://doi.org/10.1007/s10584-006-6865-z
Article
Google Scholar
Tsalickis A, Waters MN, Campbell JW (2021) Methods and analysis of Bat Guano Cores from caves for Paleoecology. J Cave Karst Stud 83(4):141–150. https://doi.org/10.4311/2020ES0104
Article
Google Scholar
Wang C, Enfield DB (2001) The tropical Western Hemisphere warm pool. Geophys Res Lett 28(8):1635–1638. https://doi.org/10.1029/2000GL011763
Article
Google Scholar
Wang H, Fu R, Kumar A et al (2010) Intensification of summer rainfall variability in the southeastern United States during recent decades. J Hydrometeorol 11:1007–1018. https://doi.org/10.1175/2010JHM1229.1
Article
Google Scholar
Waters MN, Piehler MF, Rodriguez AB et al (2009) Shallow lake trophic status linked to upper Holocene climate and human impacts. J Paleolimnol 42(1):51–64. https://doi.org/10.1007/s10933-008-9247-x
Article
Google Scholar
Watts WA (1970) The full-glacial vegetation of northwestern Georgia. Ecology 51(1):17–33. https://doi.org/10.2307/1933597
Article
Google Scholar
Watts WA (1971) Postglacial and interglacial vegetation history of southern Georgia and central Florida. Ecology 52(4):676–690. https://doi.org/10.2307/1934159
Article
Google Scholar
Watts WA (1975) A late Quaternary record of vegetation from Lake Annie, south-central Florida. Geology 3(6):344–346. https://doi.org/10.1130/0091-7613(1975)3%3C344:ALQROV%3E2.0.CO;2
Article
Google Scholar
Watts WA, Hansen BCS (1994) Pre-Holocene and Holocene pollen records of vegetation history from the Florida peninsula and their climatic implications. Palaeogeogr Palaeoclim Palaeoecol 109(2–4):163–176. https://doi.org/10.1016/0031-0182(94)90174-0
Article
Google Scholar
Wei J, Hua S, Yang ZL (2016) Impact of moisture flux convergence and soil moisture on precipitation: a case study for the southern United States with implications for the globe. Clim Dyn 46(1–2):467–481. https://doi.org/10.1007/s00382-015-2593-2
Article
Google Scholar
Whitehead DR, Sheehan MC (1985) Holocene vegetational changes in the Tombigbee River Valley, eastern Mississippi. Am Midl Nat. https://doi.org/10.2307/2425354
Article
Google Scholar
Wu W, Dickinson RE, Wang H et al (2007) Covariabilities of spring soil moisture and summertime United States precipitation in a climate simulation. Int J Climatol 27:429–438. https://doi.org/10.1002/joc.1419
Article
Google Scholar
Wurster CM, McFarlane DA, Bird MI (2007) Spatial and temporal expression of vegetation and atmospheric variability from stable carbon and nitrogen isotope analysis of bat guano in the southern United States. Geochim Cosmochim Ac 71(13):3302–3310. https://doi.org/10.1016/j.gca.2007.05.002
Article
Google Scholar
Wurster CM, McFarlane DA, Bird MI et al (2010) Stable isotopes of subfossil bat guano as a long-term environmental archive: insights from a Grand Canyon cave deposit. J Cave Karst Stud 72(2):111–121. https://doi.org/10.4311/jcks2009es0109
Article
Google Scholar
Wurster CM, Rifai H, Haig J et al (2017) Stable isotope composition of cave guano from eastern Borneo reveals tropical environments over the past 15,000 cal yr BP. Palaeogeogr Palaeoclim Palaeoecol 473:73–81. https://doi.org/10.1016/j.palaeo.2017.02.029
Article
Google Scholar
Wurster CM, Patterson WP, McFarlane DA et al (2008) Stable carbon and hydrogen isotopes from bat guano in the Grand Canyon, USA, reveal Younger Dryas and 8.2 ka events. Geology 36(9):683–686. https://doi.org/10.1130/G24938A.1
Article
Google Scholar