Skip to main content

Advertisement

Log in

Geothermal potential, chemical characteristics, and utilization of groundwater in Serbia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

To collect and unify data about all geothermal resources in Serbia, a database was formed. The database allows us to perceive the geothermal resources of Serbia and their potential for utilization. Based on the data available in the geothermal database, the estimated temperatures of reservoirs, heat power, and geothermal energy utilization were calculated. The database contains 293 geothermal records (springs, boreholes) registered at 160 locations, with groundwater temperatures in the range between 20 and 111 °C. The maximum expected temperature of the reservoir is 146 °C according to the use of a SiO2 geothermometer. Some thermal water is cooled due to mixing with cold, shallow water. Geothermal resources are mostly used for balneology and recreation, and less for heating, water supply, bottling, fish and animal farms, agriculture, and industrial. 26% of all geothermal resources is used by the local population or has not been used at all. The annual utilization of geothermal energy for direct heat is 1507 TJ/yr, and the estimated capacity of geothermal energy in Serbia is 111 MWt. The results of analytical work were presented in the form of maps with a geological and hydrogeological background. Thermal waters are mostly located within an area of Tertiary magmatism. Three geothermal potential areas are identified in Serbia: Pannonian basin-Vojvodina Province, the Mačva-Srem area and area from Jošanička Banja to Vranjska Banja (southern Serbia). Based on chemical analyses, four hydrochemical facies are distinguished. Thermal water mainly belongs to the NaHCO3 or CaMgHCO3 hydrochemical facies, usually depending on the primary aquifer type: karst, karst-fissured, intergranular or fissured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The data that support the findings of this paper are available on request. Restrictions apply to the availability of these data, which were used for this study. Data are available from the corresponding author with the permission of Ministry of Mining and Energy, and Geological Survey of Serbia.

Code availability (software application or custom code)

Not applicable.

References

  • Aksin V, Marinović Đ, Vugrines J (1991) Exploration and production of oil crude oil and gas in Yugoslav part of Pannonian basin. In: Karamata S (ed) Geodynamic evolution of the Pannonian Basin, Proceedings of the international symposium, Belgrade, pp 309–329

  • Aleksandrov VA (1932) Klasifikacija mineraljnih vod. Osnovi kurortologiji. T.1, Gosmedizdat, 133–137

  • Arnórsson S, Gunnlaugsson E, Svavarsson H (1983) The chemistry of geothermal waters in Iceland III. Chemical geothermometry in geothermal investigations. Geochim Cosmochim Acta 47:567–577. https://doi.org/10.1016/0016-7037(83)90278-8

    Article  Google Scholar 

  • Bašić Đ, Petrović J, Marić M (2005) Possibilities for utilization of energy potentials of geothermal waters in AP Vojvodina, Prometej; p 205

  • Bertani R, Lund J (2013) Chapter 9. Geothermal in World energy resources. World Energy Council

  • Buday T, Szűcs P, Kozák M, Püspöki Z, McIntosh RW, Bódi E, Bálint B, Bulátkó K (2015) Sustainability aspects of thermal water production in the region of Hajduszoboszlo-Debrecen, Hungary. Environ Earth Sci 74:7511–7521. https://doi.org/10.1007/s12665-014-3983-1

    Article  Google Scholar 

  • Chebotarev II (1955) Metamorphism of natural waters on the crust of weathering: Geochim. et Cosmochim. Acta, 8: 22–48; 137–170; 198–212

  • Cvetković V, Prelević D, Downes H, Jovanović M, Vaselli O, Pécskay Z (2004) Origin and geodynamic significance of Tertiary postcollisional basaltic magmatism in Serbia (central Balkan Peninsula). Lithos 73:161–186

    Article  Google Scholar 

  • Dimitrijević M (2002) Geological map 1:2.000.000, Geological Atlas of Serbia, no 1. Republic foundation for geological investigations and Geological survey-Gemini

  • Dragašević T, Andrić B, Joksović P (1990) Structural Map of Mohorovičić discontinuity of Yugoslavia. Scale 1:500.000. Fed. Geol. Inst., Beograd

  • Filipović B, Dimitrijević N (1991) Mineral waters. Faculty of Mining and Geology, Belgrade

    Google Scholar 

  • Filipović B, Krunić O, Lazić M (2005) Regional Hydrogeology of Serbia. Faculty of Mining and Geology, University in Belgrade, Belgrade

    Google Scholar 

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50. https://doi.org/10.1016/0375-6505(77)90007-4

    Article  Google Scholar 

  • Fournier RO (1979) A revised equation for the Na–K geothermometer. Geotherm Resour Counc Trans 3:221–224

    Google Scholar 

  • Fournier RO, Potter RWII (1982) A revised and expanded silica (quartz) geothermometer. Geotherm Resourc Counc Bull 11:3–9

    Google Scholar 

  • Fournier RO, Truesdell AH (1973) An empirical Na–K–Ca geothermometer for natural waters. Geochim Cosmochim Acta 37:1255–1275

    Article  Google Scholar 

  • Garrels RM, Christ CL (1965) Solutions minerals and equilibria. Harper and Row, New York, p 450

    Google Scholar 

  • Garrels RM, MacKenzie FT (1967) Origin of the chemical compositions of some springs and in lakes in Equilibrium concepts in natural water chemistry. Am Chem Soc Adv Chem Ser 67:222–242

    Article  Google Scholar 

  • Giggenbach W F (1986) Graphical techniques for the evaluation of water/rock equilibration conditions by use of Na, K, Mg and Ca contents of discharge waters. In: Proceeding 8th Geothermal Workshop, 37–43. Labo. geology, ENS, Paris, ERAG on CNRS

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52(12):2749–2765. https://doi.org/10.1016/0016-7037(88)90143-3

    Article  Google Scholar 

  • Goldscheider N, Mádl-Szőnyi J, Erőss A, Schill E (2010) Review: thermal water resources in carbonate rock aquifers. Hydrogeol J 18:1303–1318. https://doi.org/10.1007/s10040-010-0611-3

    Article  Google Scholar 

  • Golušin M, Munitlak Ivanković O, Bagarić I, Vranješ S (2010) Exploitation of geothermal energy as a priority of sustainable energetic development in Serbia. Renew Sust Energ Rev 14:868–871. https://doi.org/10.1016/j.rser.2009.06.026

    Article  Google Scholar 

  • Horváth F, Musitz B, Balázs A, Végh A, Uhrine A, Nádor A, Koroknai B, Pap N, Tóth T, Wórum G (2015) Evolution of the Pannonian basin and its geothermal resources. Geothermics 53:328–352. https://doi.org/10.1016/j.geothermics.2014.07.009

    Article  Google Scholar 

  • Hsu HH and Yeh HF (2020) Factors controlling of thermal water hydrogeochemical characteristics in Tatun Volcano Group, Taiwan, Water, 12, 2473. https://doi.org/10.3390/w12092473

  • Jelenković R, Kostić A, Životić S, Ercegovac M (2008) Mineral resources of Serbia. Geol Carpath 59(4):345–361

    Google Scholar 

  • Jordan H, Weder HJ (1988) Hydrogeologie. Grundstoff-Verlag, Leipzig

    Google Scholar 

  • Juhász G (1992) A pannóniai (s.l.) formációk téképezése az Alföldön: elterjedés, fácies és üledékes környezet. Földt Közlöny 122:133–165

    Google Scholar 

  • Karamata S, Krstić B (1996) Terranes of Serbia and neighbouring areas. In: Knežević - Đorđević V and Krstić B (eds) Terranes of Serbia. The formation of the geologic framework of Serbia and the adjacent region. Faculty of Mining and Geology, Comm. Geodynamics Serbian Academy of Science and Arts, pp 25–40

  • Karamata S, Krstić B, Stojnov R (1992) Terranes from adriatic to the Moesian Massif in the central part of the Balkan Peninsula. Terra Nova, 4, Abstract suppl. 2, Alcapa Symp., Gray, Graz, pp 1–36

  • Košić K, Pivac T, Romelić J, Lazić L, Stojanović V (2011) Characteristics of thermal–mineral waters in Backa region (Vojvodina) and their exploitation in spa tourism. Renew Sust Energ Rev 15:801–807. https://doi.org/10.1016/j.rser.2010.09.004

    Article  Google Scholar 

  • Leko TM, Shcherbakov A, Joksimovic MH (1922) Medicinal waters and spas. Ministry of public health, Belgrade (in Serbian)

    Google Scholar 

  • Lindal B (1973) Industrial and other applications of geothermal energy. In: Hch A (ed) geothermal energy. UNESCO, Paris, pp 135–148

    Google Scholar 

  • Lindenmayer E (1856) Opis mineralni i lekoviti voda i njino opredelenije voobšte a ponaosob lekoviti voda u Kneževstvu Srbije dosad poznati. Praviteljstvo, Knjigopeč, Knjaž. Srbskog, Beograd

  • Martinović M, Milivojević M (2000) The hydrogeothermal model of Mačva. In: Proceedings World Geothermal Congress, Kyushu-Tohoku, Japan; May 28–June 10

  • Martinović M, Milivojević M (2010) Serbia Country update, proceedings world geothermal congress, Bali, Indonesia; April, pp 25–29

  • Martinović M, Zlokolica-Mandić M, Vukićević Z (2010) Geothermal atlas of Vojvodina—autonomous province of Vojvodina—provincial secretariat for energy. Republic of Serbia, Serbia

    Google Scholar 

  • Milenić D, Vasiljević P, Vranješ A (2010) Criteria for use of groundwater as renewable energy source in geotermal heat pump systems for building heating/cooling purposes. Energ Build 42(5):649–657. https://doi.org/10.1016/j.enbuild.2009.11.002

    Article  Google Scholar 

  • Milivojević M (1993) Geothermal model of Earth’s crust and lithosphere for the territory of Yugoslavia—some tectonic implications. Stud Geophys Geod 37:265–278

    Article  Google Scholar 

  • Milivojević M, Martinović M (1996) Using of geothermal resources in the world, Ecologica, Special issue, no.3

  • Milivojević M, Martinović M (2000) Geothermal energy possibilities, exploration and future prospects in Serbia. In: Proceedings World Geothermal Congress; Kyushu, Tohoku, Japan

  • Milivojević M and Martinović M (2005) Geothermal energy possibilities, exploration and future prospects in Serbia. In: Proceedings World Geothermal Congress, Antalya, Turkey

  • Miošić N, Samardžić N (2016) Mineral, Thermal and Thermomineral Waters of Bosnia and Herzegovina. In: Papić P (ed) Mineral and thermal waters of Southeastern Europe Envir Earth Sci. Springer, Berlin, pp 147–171

    Chapter  Google Scholar 

  • Muffler LJP, Cataldi R (1978) Methods for regional assessment of geothermal resources. Geothermics 7:53–89

    Article  Google Scholar 

  • Nádor A, Lapanje A, Tóth G, Rman N, Szőcs T, Prestor J, Uhrin A, Rajver D, Fodor L, Muráti J, Székely E (2012) Transboundary geothermal resources of the Mura-Zala basin: joint thermal aquifer management of Slovenia and Hungary. Geologija 55(2):209–224. https://doi.org/10.5474/geologija.2012.013

    Article  Google Scholar 

  • Nieva D, Nieva R (1987) Developments in geothermal energy in Mexico. XII A cationic composition geothermometer for prospection of geothermal resources. Heat Recover Syst CPH 7:243–258. https://doi.org/10.1016/0890-4332(87)90138-4

    Article  Google Scholar 

  • Oudech S, Đokić V (2015) Serbia Country Update, Proceedings World Geothermal Congress, Melbourne, Australia

  • Oudech S, Đokić V (2019) Geothermal Energy Use, Country Update for Serbia, European Geothermal Congress, Den Haag, The Netherlands

  • Ovčinkov AM (1963) Mineraljnie void. Izdanie vtoroe. Gosgeoltehizdat, Moskva, pp 1–375

    Google Scholar 

  • Perić J, Milivojević M (1990) Study: geothermal potential territory of Serbia without territory of Autonomous provinces. Faculty of Mining and Geology, University of Belgrade, Belgrade (in Serbian)

    Google Scholar 

  • Petrović Pantić T, Birke M, Petrović B, Nikolov J, Dragišić V, Živanović V (2015) Hydrogeochemistry of thermal groundwaters in the Serbian crystalline core region. J Geochem Explor n 159:101–114. https://doi.org/10.1016/j.gexplo.2015.08.009

    Article  Google Scholar 

  • Petrović Pantić T (2014) Hydrogeothermal resources of Serbian crystalline core Ph.D. dissertation, Faculty of Mining and Geology, University of Belgrade, pp 199 (in Serbian)

  • Petrović Pantić T and Tomić M (2019) Study: collection, updating and building database about geothermal resources of Republic of Serbia, Geological Survey of Serbia (in Serbian)

  • Porowski A (2017) Mineral and thermal waters. In: Mayers (ed) Encyclopedia of sustainability science and technology. Springer, Berlin. https://doi.org/10.1007/978-1-4939-2493-6_978-1

    Chapter  Google Scholar 

  • Protić D (1995) Mineral and thermal water of Serbia, Special issue. Geoinstitute, Belgrade (in Serbian)

    Google Scholar 

  • Radovanović S (1898) Groundwater, Srpska književna zadruga

  • Ristić D, Vukoičić D, Nikolić M, Milinčić N, Kićović D (2019) Capacities and energy potential of thermal-mineral springs in the area of the Kopaonik tourist region (Serbia). Renew Sust Energ Rev 102:129–138. https://doi.org/10.1016/j.rser.2018.12.005

    Article  Google Scholar 

  • Rman N, Gál N, Marcin D, Weilbold J, Schubert G, Lapanje A, Rajver D, Benková K, Nádor A (2015) Potentials of transboundary thermal water resources in the western part of the Pannonian basin. Geothermics 55:88–98. https://doi.org/10.1016/j.geothermics.2015.01.013

    Article  Google Scholar 

  • Rman N, Bălan LL, Bobovečki I, Gál N, Jolović B, Lapanje A, Marković T, Milenić D, Skopljak F, Rotár-Szalkai A, Samardžić N, Szőcs T, Šolaja D, Toholj N, Vijdea AM, Vranješ A (2020) Geothermal sources and utilization practice in six countries along the southern part of the Pannonian basin. Envir Earth Sci 79:1. https://doi.org/10.1007/s12665-019-8746-6

    Article  Google Scholar 

  • Todorović B, Stojiljković D, Petrovićpantić T, Mitić N, Nikolić LJ, Cakić S (2015) Hydrogeochemistry and aragonite scaling in the Sijarinska spa (Serbia). Carbonate Evaporite 31(4):367–374. https://doi.org/10.1007/s13146-015-0266-1

    Article  Google Scholar 

  • Tóth J, Almási I (2001) Interpretation of observed fluid potential patterns in a deep sedimentary basin under tectonic compression. Geofluids 1:11–36

    Article  Google Scholar 

  • Tóth G, Rman N, Rotár-Szalkai Á, Kerékgyártó T, Szőcs T, Lapanje A, Černák R, Remsík A, Schubert G, Nádor A (2016) Transboundary fresh and thermal groundwater flows in the west part of the Pannonian Basin. Renew Sust Energ Rev 57:439–454. https://doi.org/10.1016/j.rser.2015.12.021

    Article  Google Scholar 

  • Valjarević A, Srećković-Batoćanin D, Valjarević D, Matović V (2018) A GIS-based method for analysis of a better utilization of thermal-mineral springs in the municipality of Kuršumlija (Serbia). Renew Sust Energ Rev 92:948–957. https://doi.org/10.1016/j.rser.2018.05.005

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a result of the project: “Collection, updating and building database about geothermal resources of Republic of Serbia” supported by the Government of Republic of Serbia, Ministry of Mining and Energy and GeoERA project, funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 731166.

Funding

The Government of Republic of Serbia, Ministry of Mining and Energy, and GeoERA project, co-funded from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 731166, supported the research.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: TPP, KAS; Data acquisition: TPP, MT, KAS; Writing—original draft preparation TPP, KSA, MT; Writing—edited the manuscript: TPP, KSA, JŠ. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Tanja Petrović Pantić.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović Pantić, T., Atanasković Samolov, K., Štrbački, J. et al. Geothermal potential, chemical characteristics, and utilization of groundwater in Serbia. Environ Earth Sci 80, 736 (2021). https://doi.org/10.1007/s12665-021-09985-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09985-w

Keywords

Navigation