Skip to main content
Log in

Erionite series minerals in felsic volcanic rocks of southern Mesa Central, Guanajuato, Mexico

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Trace quantities of erionite series minerals were identified along with chabazite, clinoptilolite, and morderite within Chichindaro rhyolites (~ 30 Ma) at latitude 21°8′30″–21°17′00″ and longitude 101°5′00″–101°10′00″, ~ 15 km south of the present-day town of San Felipe in the state of Guanajuato, Mexico. Special attention was given to the erionite -K, Na, and Ca varieties. Despite their occurrence in trace amounts, image analyses of these minerals with the aid of Scanning Electron Microscope indicates the existence of both hair-like and needle-like fibers that are 5.85–29.26 μm long and 2.510–0.252 μm thick, which allows them to be categorized as “inhalable” (with length > 5 μm and thickness < 3 μm) that readily enters the respiratory tract of human and their livestock residing in this region. Chemical data along with the atomic% and apfu values obtained based on 72 oxygen atoms reveals that six crystals spots from SF-14-a and sample SF-12 show Si/(Si + Al) = 0.69–0.78, similar to the cancerogenic erionite identified at Tierra Blanca, Mexico; Lessini Mountains, NE Italy; Cappadocia, Turkey, and North Dakota, USA. However, these spots fail the E% and Mg content test. On the contrary, spots SF-14-2A, 2B, and 2C show Mg content in the range of 0.35–0.54 and balance error E% of − 2.90% (only in SF-14-2B) and pass the positive identification tests for erionites. Therefore, it is advisable to comment that the erionite series minerals identified within Chichindaro rhyolites area are of “undifferentiated” type and may not be carcinogenic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aguillón-Robles A, Tristán-González M, López-Doncel RA, García-Arreolam MA, Almaguer-Rodríguez MA, Maury RC (2012) Trace elements geochemistry and origin of volcanic units from the San Luis Potosi and Rio Santa Maria volcanic fields, Mexico- the bearing of ICP-QMS data. Geofis Intern 51(3):293–308

    Google Scholar 

  • Aguillon-Robles A, Tristan-Gonzalez M, Aguirre-Diaz GJ, Lopez-Doncel RA, Bellon H, Martinez-Esparza G (2014) Eocene to Quaternary mafic-intermediate volcanism in San Luis Potosi, central Mexico- the transition from Farallon plate subduction to intra-plate continental magmatism. J Volcanol Geotherm Res 276:152–172

    Article  Google Scholar 

  • Aguirre-Díaz GJ, Labarathe-Hernandez G (2003) Fissure ignimbrites- fissure-source origin for voluminous ignimbrite of the Sierra Madre Occidental and its relationship with Basin and Range faulting. Geology 31:773–776

    Article  Google Scholar 

  • Aguirre-Díaz GJ, Nelson SA, Ferrari L, López-Martínez M (1997) Ignimbrites of the central Mexican Volcanic Belt, Amealco and Huichapan Calderas (Querétaro-Hidalgo). In: Aguirre-Díaz GJ, Aranda-Gómez JJ, Carrasco-Núñez G, Ferrari L (eds) Magmatism and tectonics of central and northwestern Mexico; a selection of the 1997 IAVCEI General Assembly excursions. Universidad Nacional Autónoma de México, Instituto de Geología Excursión 1, México, pp 1–39

    Google Scholar 

  • Alberti A, Martucci A, Galli E, Vezzalini G (1997) A re-examination of the crystal structure of erionite. Zeolites 19:349–352

    Article  Google Scholar 

  • Aldridge LP, Pope CG (1981) Infrared and adsorption studies of a New Zealand erionite. NZ J Sci 24:263–271

    Google Scholar 

  • Aranda-Gomez JJ, Aranda-Gomez JM, Nieto-Samaniego AF (1989) Consideraciones acerca de la evolución tectónica durante el Cenozoico de la Sierra de Guanajuato y la parte meridional de la Mesa Central, Mexico. Mex Bol Inst Geol UNAM 8:33–46

    Google Scholar 

  • Artvinli M, Baris YI (1979) Malignant mesotheliomas in a small village in the Anatolian region of Turkey- An epidemiologic study. J Nat Cancer Inst 63(1):17–22

    Google Scholar 

  • Ballirano P, Andreozzi GB, Dogan M, Dogan AU (2009) Crystal structure and iron topochemistry of erionite-K from Rome, Oregon. USA Am Miner 94:1262–1270

    Article  Google Scholar 

  • Ballirano P, Pacella A, Cremisini C, Nardi E, Fantauzzi M, Atzei D, Rossi A, Cametti G (2015) Fe(II) segregation at a specific crystallographic site of fibrous erionite- A first step toward the understanding of the mechanisms inducing its carcinogenicity. Microporous Mesoporous Mater 211:49–63

    Article  Google Scholar 

  • Baris YI, Sahin AA, Ozesmi MM, Kerse I, Ozen E, Kolacan B et al (1978) An outbreak of pleural Mesothelioma and chronic fibrosing pleurisy in the village of Karain/Urgup in Anatolia. Thorax 33(2):181–192

    Article  Google Scholar 

  • Baris YI, Simonato L, Artvinli M, Pooley F, Saracci R, Skidmore J et al (1987) Epidemiological and environmental evidence of the health effects of exposure to erionite fibres—a four-year study in the Cappadocian region of Turkey. Intern J Cancer 39:10–17

    Article  Google Scholar 

  • Batiashvili TV, Gvakharia GV (1968) Erionite found for the first time in Georgia. Doklady of the Russian Academy of Sciences. Earth Sci Sect 179:122–124

    Google Scholar 

  • Belitskiy IA, Bukin GV (1968) First find of erionite in the USSR. Dokl Russ Acad Sci Earth Sci Sect 178:103–106

    Google Scholar 

  • Birch WD (1987) Zeolites from, Victoria. Austral Miner 2:15–19

    Google Scholar 

  • Birch WD (1988) Zeolites from Phillip Island and Flinders. Vic Mine Rec 19:451–460

    Google Scholar 

  • Bish DL, Chipera SJ (1991) Detection of trace amounts of erionite using X-ray powder diffraction: erionite in tuffs of Yucca Mountains, Nevada, and Central Turkey. Clays Clay Miner 39(4):437–445

    Article  Google Scholar 

  • Bish DL, Ming DW (eds) (2001) Natural zeolites- occurrence properties applications. Walter de Gruyter, Berlin

    Google Scholar 

  • Botero-Santa PA, Alaniz-Alvarez SA, Nieto-Samaniego AF, López-Martínez M, Levress G, Xu S (2015) Origen y desarrollo de la cuenca El Bajío en el sector central de la Faja Volcánica Transmexicana. Rev Mex Cienc Geol 32(1):84–98

    Google Scholar 

  • Cametti G, Pacella A, Mura F, Rossi M, Ballirano P (2013) New morphological, chemical, and structural data of woolly erionite-Na from Durkee, Oregon. USA Am Miner 98:2155–2163

    Article  Google Scholar 

  • Carbone M, Emri S, Dogan AU, Steele I, Tuncer M, Pass HI, Baris YI (2007) A mesothelioma epidemic in Cappadocia: scientific developments and unexpected social outcomes. Nat Rev Cancer 7:147–154

    Article  Google Scholar 

  • Carbone M, Baris YI, Bertino P, Brass B, Comertpay S, Dogan AU et al (2011) Erionite exposure in North Dakota and Turkish villages with Mesothelioma. P Natl Acad Sci USA 108(33):13618–13623

    Article  Google Scholar 

  • Conrad WK (1984) The mineralogy and petrology of compositionally zoned ash flow tuffs, and related silicic volcanic rocks, from the McDermitt caldera complex, Nevada- Oregon. J Geophy Res Earth 89(B10):8639–8664

    Article  Google Scholar 

  • Coombs DS, Alberti A, Armbruster T, Artioli G, Colella C, Galli E, Grice JD, Liebau F, Mandarino JA, Minato H et al (1997) Recommended nomenclature for zeolite minerals- Report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can Miner 35:1571–1606

    Google Scholar 

  • Croce A, Allegrina M, Rinaudo C, Gaudino G, Yang H, Carbone M (2015) Numerous iron-rich particles lie on the surface of erionite fibers from Rome (Oregon, USA) and Karlik (Cappadocia, Turkey). Microsc Microanal 21:1341–1347

    Article  Google Scholar 

  • Deer WA, Howie R, Wis WS, Zussman J (2004) Rock forming minerals. Framework Silicates- Silica Minerals, Feldspathoids and the Zeolites. The Geological Society, London

    Google Scholar 

  • Del Pilar-Martínez A, Nieto-Samaniego AF, Alaniz-Alvarez SA, Angeles-Moreno E (2020) Geology of the southern Mesa Central of México: recording the beginning of a polymodal fault system. J Maps 16(2):199–211

    Article  Google Scholar 

  • Del Río P, Nieto-Samaniego AF, Alaniz-Alvarez SA, Angeles-Moreno E, Escalona-Alcázar F, Del Pilar-Martínez A (2020) Geología y estructura de las sierras de Guanajuato y Codornices, Mesa Central, México. Bol Soc Geol Mex 72(1):A071019

    Google Scholar 

  • DePablo L, Chavez Garcia M (1996) Diagenesis of Oligocene vitric tuffs to zeolites, Mexican Volcanic Belt. Clays and Clay Miner 44(3):324–338

    Article  Google Scholar 

  • DePablo L, Doval M, Iglesia A, Soriano J (2014) CaK-clinoptilolite, KNa-chabazite, KNa-heulandite, KNa-erionite and Na-phillipsite from tuffaceous rocks, Province of the Mesa central, Mexico. Rev Mex Cienc Geol 31(1):116–126

    Google Scholar 

  • Dogan AU (2003a) Zeolite mineralogy and Cappadocian erionite. Indoor Built Environ 12:337–342

    Article  Google Scholar 

  • Dogan AU (2003b) Mesothelioma in Cappadocian villages. Indoor Built Environ 12:367–375

    Article  Google Scholar 

  • Dogan M (2003c) Sources and types of mineral dust in regions of Turkey with endemic malignant Mesothelioma. Indoor Built Environ 12:377–383

    Article  Google Scholar 

  • Dogan M (2012) Quantitative characterization of the mesothelioma-inducing erionite series minerals by transmission electron microscopy and energy dispersive spectroscopy. Scanning 34:37–42. https://doi.org/10.1002/sca.20276

    Article  Google Scholar 

  • Dogan AU, Dogan M (2008) Reevaluation and re-classification of erionite series minerals. Environ Geochem Health 30:355–366

    Article  Google Scholar 

  • Dogan AU, Baris YI, Dogan M, Emri S, Steele I, Elmishad AG, Carbone M (2006) Genetic predisposition to fiber carcinogenesis causes a mesothelioma epidemic in Turkey. Cancer Res 66:5063–5068

    Article  Google Scholar 

  • Dogan AU, Dogan M, Hoskins JA (2008) Erionite series minerals- mineralogical and carcinogenic properties. Environ Geochem Health 30:367–381

    Article  Google Scholar 

  • Dogan AU, Dogan M, Hoskins JA (2011) Erionite and its Health Effects. In: Nriagu JO (ed) Encyclopedia of environmental health, vol 2. Elsevier, Burlington, pp 590–593

    Chapter  Google Scholar 

  • Eakle AS (1898) Erionite, a new zeolite. Am J Sci 156:66–68

    Article  Google Scholar 

  • Eberly PEJ (1964) Adsorption properties of naturally occurring erionite and its cationic-exchanged forms. Am Miner 49:30–40

    Google Scholar 

  • Echegoyén-Sánchez J, Romero-Martínez S, Velázquez-Silva S (1970) Geología y yacimientos minerales de la parte central del distrito minero de Guanajuato. Bol Cons De Recur Miner Renov 75:48

    Google Scholar 

  • Giordani M, Mattioli M, Dogan M, Dogan AU (2016) Potential carcinogenic erionite from Lessini Mounts, NE Italy: morphological, mineralogical and chemical characterization. J Toxicol Environ Health A 79(18):808–824

    Article  Google Scholar 

  • Gómez-Tuena A, Orozco-Esquivel MT, Ferrari L (2007) Igneous petrogenesis of the Trans-Mexican Volcanic Belt. In: Alaniz-Alvarez SA, Nieto-Samaniego AF (eds) Geology of México- celebrating the centenary of the Geological Society of México, vol 422. Geological Society of America, Boulder, pp 129–181. https://doi.org/10.1130/2007.2422(05)

    Chapter  Google Scholar 

  • Gottardi G, Galli E (1985) Natural zeolites. Springer, Heidelberg

    Book  Google Scholar 

  • Gualtieri A, Artioli G, Passaglia E, Bigi S, Viani A, Hanson JC (1998) Crystal structure-crystal chemistry relationships in the zeolites erionite and offretite. Am Miner 83:590–606

    Article  Google Scholar 

  • Gude AJ, Sheppard RA (1981) Woolly erionite from the Reese River zeolite deposit, Lander County, Nevada, and its relationship to other erionites. Clays Clay Min 29:378–384

    Article  Google Scholar 

  • Harada K, Iwamoto S, Kihara K (1967) Erionite, phillipsite and gonnardite in the amygdales of altered basalt from Maze, Niigata Prefecture, Japan. Am Miner 52:1785–1794

    Google Scholar 

  • Hasenaka T, Carmichael ISE (1987) The cinder cones of Michoacán-Guanajuato, Central Mexico: Petrology and Chemistry. J Petrol 28(2):241–269

    Article  Google Scholar 

  • Hay RL (1966). Zeolites and zeolitic reactions in sedimentary rocks. Geological Society of America, Boulder. Pp 85:1–130

  • Henry CD, Aranda-Gómez JJ (1992) The real southern Basin and Range: Mid-to late Cenozoic extension in Mexico. Geology 20:701–704

    Article  Google Scholar 

  • Hentschel G (1986) Paulingit und andere Seltene Zeolithe in einem gefritteten Sandsteineinschluss im Basalt von Ortenberg (Vogelsberg). Geol Jahrb Hess 114:249–256

    Google Scholar 

  • Hey MH (1959) A new occurrence of erionite. Miner Mag 32:343

    Google Scholar 

  • Ilgren EB, Ortega Breña M, Castro Larragoitia J, Loustaunau Navarrete G, Fuentes Breña A, Krauss E, Fehér G (2008) A Reconnaissance study of a potential emerging Mexican Mesothelioma epidemic due to fibrous zeolite exposure. Indoor Built Environ 17(6):496–515

    Article  Google Scholar 

  • Irving TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    Article  Google Scholar 

  • Ishikawa Y, Sawaguchi T, Iwaya S, Horiuchi M (1976) Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration halos. Min Geol 26:105–117

    Google Scholar 

  • Labarthe-Hernández G, Tristán-González M, Aranda-Gómez JJ (1982) Revisión estratigráfica del Cenozoico de la parte central del estado de San Luis Potosí, vol 85. Universidad Autónoma de San Luis Potosí, Instituto de Geología, Folleto Técnico, Mexico, p 1

    Google Scholar 

  • Labarthe-Hernandez G, Tristán-Gonzalez M, Aguillón-Robles A, Jiménez-Lopez LS, Romero A (1989) Cartografía geológica 1–50 000 de las hojas El Refugio y Mineral El Realito, estados de San Luis Potosí y Guanajuato, vol 112, 76th edn. Universidad Autónoma de San Luis Potosí, Instituto de Geología, Folleto Técnico, Mexico, p 4

    Google Scholar 

  • Lapierre H, Ortiz E, Abouchami W, Monod O, Coulon C, Zimmermann JL (1992) A crustal section of an intra-oceanic island arc- the Late Jurassic-Early Cretaceous Guanajuato magmatic sequence, central Mexico- Earth Planet. Sci Lett 108:61–77

    Google Scholar 

  • Large RR, Gemmell JB, Paulick H, Huston DL (2001) The alteration box plot: a simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic-hosted massive sulfide deposits. Econ Geol 96:957–971

    Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alcali-silica diagram. J Petrol 27(3):745–750

    Article  Google Scholar 

  • Lee KP (1985) Lung response to particulates with emphasis on asbestos and other fibrous dusts. Crit Rev Toxicol 14:33–86

    Article  Google Scholar 

  • Lipman PW (1965) Chemical comparison of glassy and crystalline volcanic rocks, vol 1201. Geological Survey Bulletin, Washington, p 24

    Google Scholar 

  • Macpherson HG, Livingstone A (1982) Glossary of Scottish mineral species 1981. Scott J Geol 18(1):1–47 (Edinburg and Glasgow)

    Article  Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Article  Google Scholar 

  • Matassa R, Familiari G, Relucenti M, Battaglione E, Downing C, Pacella A, Cametti G, Ballirano P (2015) A deep look into erionite fibres—an electron microscopy investigation of their self-assembly. Sci Rep 5:16757

    Article  Google Scholar 

  • Matsubara S, Tiba T, Kato A (1978) Erionite in welded tuff from Ashio, Tochigi Prefecture, Japan. Bull Nat Sci Mus Ser C 4:1–6

    Google Scholar 

  • Metropolis W (1986) Harvard’s mineralogical tour of Iceland. Rocks Miner 61:63–68

    Article  Google Scholar 

  • Mumpton FA (1973) First reported oeeurrence of zeolites in sedimentary rocks of Mexico. Am Miner 58:287–290

    Google Scholar 

  • Mumpton FA (1977) Utilization of natural zeolites. In: Mumpton FA (ed) In: Mineralogy and geology of natural zeolites, vol 4. Mineralogical Society of America, Chantilly, pp 177–204

    Chapter  Google Scholar 

  • Mumpton FA (1979) A reconnaissance study of the association of zeolites with mesothelioma occurrences in central Turkey. USGS Open File Rep 55:79–954

    Google Scholar 

  • Nieto-Samaniego AF, Macías-Romo C, Alaniz-Alvarez SA (1996) Nuevas edades isotópicas de la cubierta volcánica cenozoica de la parte meridional de la Mesa Central, México. Rev Mex Cienc Geol 13(1):117–122

    Google Scholar 

  • Nieto-Samaniego AF, Alaniz-Álvarez SA, Camprubí í Cano A (2005) La Mesa Central de México: estratigrafía, estructura y evolución tectónica cenozoica. Bol Soc Geol Mex 57(3):285–318

    Article  Google Scholar 

  • Nieto-Samaniego AF, Báez-López JA, Levresse G, Alaniz-Alvarez SA, Ortega-Obregón C, López-Martínez M, Solé-Viñas J (2016) New stratigraphic, geochronological, and structural data from the southern Guanajuato Mining District, México: implications for the caldera hypothesis. Intern Geol Rev 58(2):246–262

    Article  Google Scholar 

  • NIOSH (2011) Asbestos fibers and other elongate mineral particles- state of the science and roadmap for research. National Institute for Occupational Safety and Health, Cincinnati (Publication No 2011–159)

    Google Scholar 

  • Noble DC (1970) Loss of sodium from crystallized comendite welded tuffs of the Miocene Grouse canyon member of the Belted Range tuff Nevada. Geol Soc Am Bull 81(9):2677–2688

    Article  Google Scholar 

  • Noh JH, Kim SJ (1986) Zeolites from tertiary tuffaceous rocks in Yeongil area, Korea. Stud Surf Sci Catal 28:59–66

    Article  Google Scholar 

  • Ortega-Guerrero MA, Carrasco Núñez G (2013) Environmental occurrence, origin, physical and geochemical properties, and carcinogenic potential of erionite near San Miguel de Allende, Mexico. Environ Geochem Health 36:517–529

    Article  Google Scholar 

  • Ortega-Guerrero MA, Carrasco-Núñez G, Barragan-Campos H, Ortega MR (2015) High incidence of lung cancer and malignant mesotelioma linked to erionite fibre exposure in a rural community in Central Mexico. Occup Environ Med 72(3):216

    Article  Google Scholar 

  • Passaglia E, Galli E (1974) Levyne and erionite from Sardinia, Italy. Contrib Miner Pet 43:253–259

    Article  Google Scholar 

  • Passaglia E, Tagliavini A (1995) Erionite from Faedo, Colli Euganei, Italy. Neues Jahrb Fur Mineral Monatshefte 4:185–191

    Google Scholar 

  • Passaglia E, Galli E, Rinaldi R (1974) Levines and erionites from Sardinia, Italy. Contrib Miner Pet Petrol 43:253–259

    Article  Google Scholar 

  • Passaglia E, Artioli G, Gualtieri A (1998) Crystal chemistry of the zeolites erionite and offretite. Am Miner 83:577–589

    Article  Google Scholar 

  • Pongiluppi D (1976) Offretite, garronite and other zeolites from ‘“Central Massif”’, France. Bull De La Soc Fr De Mineral Et De Cristallogr 99:322–327

    Google Scholar 

  • Poole A, Brown RC, Turner CJ, Skidmore JW, Griffiths DM (1983) In vitro genotoxic activities of fibrous erionite. Br J Cancer 47:697–705

    Article  Google Scholar 

  • Pooley PD (1979) Evaluation of fiber samples taken from the vicinity of two villages in Turkey. In: Demen R, Dement JH (eds) Dust and disease. Pathodox Publication, Park Forest South, p 41

    Google Scholar 

  • Randall RJA, Saldaña AF, Clark KF (1994) Exploration in a volcanic- plutonic center at Guanajuato, Mexico. Econ Geol 89:1722–1751. https://doi.org/10.2113/gsecongeo.89.8.1722

    Article  Google Scholar 

  • Rinaldi R (1976) Crystal chemistry and structural epitaxy of offretite-erionite from Sasbach, Kaiserstuhl. Neues Jahrb Miner Monatsh 1974:145–156

    Google Scholar 

  • Rinaldi R, Smith JV, Jung G (1975) Chemistry and paragenesis of faujasite, phillipsite and offretite from Sasbach, Kaiserstuhl, Germany. Neues Jahrb Miner Monatsh 10:433–443

    Google Scholar 

  • Rodriguez-Rios R, Torres-Aguilera J (2009) Evolucion petrologica y geoquimica del vulcanismo bimodal oligocenico en el campo volcanico de San Luis Potosi (Mexico). Rev Mex Cienc Geol 26:658–673

    Google Scholar 

  • Rodriguez-Rios R, Aguillon-Robles A, Leroy JL (2007) Evolución petrológica y geoquímica de un complejo de domos topaciferos en el Campo Volcanico de San Luis Potosi (Mexico). Rev Mex Cienc Geol 24(3):328–343

    Google Scholar 

  • Rychly R, Danek M, Siegl J (1982) Structural epitaxy of offretite-erionite from Prackovice nad Labem, Bohemia. Chem Erde 41:263–268

    Google Scholar 

  • Saini-Eidukat B, Triplet JW (2014) Erionite and offretite from the Killdeer Mountains, Dunn County, North Dakota, USA. Am Miner 99:8–15

    Article  Google Scholar 

  • Sameshima T (1978) Zeolites in tuff beds of the Miocene Waitamata group, Auckland province, New Zealand. In: Sand LB, Mumpton FA (eds) Natural zeolites. Pergamon, Oxford, pp 309–318

    Google Scholar 

  • Shand SJ (1943) The eruptive rocks, 2nd edn. Wiley, New York, p 444

    Google Scholar 

  • Sheppard RA, Gude AJ (1965) Zeolitic authigenesis of tuffs in the Ricardo Formation, Kern County, Southern California, USGS Professional Paper 525-D: D44-D47.

  • Sheppard RA, Gude AJ (1969) Chemical composition and physical properties of the related zeolites offretite and erionite. Am Miner 54:875–886

    Google Scholar 

  • Solari LA, Torres de León R, Hernández-Pineda G, Solé J, Solís-Pichardo G, Hernández-Treviño T (2007) Tectonic significance of Cretaceous-Tertiary magmatic and structural evolution of the northern margin of the Xolapa Complex, Tierra Colorada area, southern Mexico. GSA Bull 119(9/10):1265–1279

    Article  Google Scholar 

  • Solari LA, Gómez-Tuena A, Bernal JP, Pérez-Arvizu O, Tanner M (2009) U-Pb zircon geochronology with an integrated LA-ICP-MS microanalytical workstation: achievements in precision and accuracy. Goestandards Geoanalytical Res 34(1):03–10

    Google Scholar 

  • Stanton MF, Layard M, Tegeris A, Miller E, May M, Morgan E, Smith A (1981) Relation of particles dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Nat Cancer Inst 67:965–975

    Google Scholar 

  • Staples LW, Gard JA (1959) The fibrous zeolite erionite- its occurrence, unit cell, and structure. Miner Mag 322:261–281

    Google Scholar 

  • Surdam RC, Eugster HP (1976) Mineral reactions in the sedimentary deposits of the Lake Magadi region, Kenya. Geol Soc Am Bull 87:1739–1752

    Article  Google Scholar 

  • Surdam RC, Sheppard RA (1978) Zeolites in saline, alkaline lake deposits. In: Sand LB, Mumpton FA (eds) Natural zeolites: occurrence, properties, use. Pergamon, Oxford, pp 145–199

    Google Scholar 

  • Suzuki Y, Kohyama N (1984) Malignant mesothelioma induced by asbestos and zeolite in the mouse peritoneal cavity. Environ Res 35:277–292

    Article  Google Scholar 

  • Tardy M, Lapierre H, Boudier JL, Yta M, Coulon C (1991) The Late Jurassic Early Cretaceous arc of western Mexico (Guerrero terrane); origin and geodynamic evolution- Universidad Autónoma de Hidalgo y Sociedad Mexicana de Mineralogía- Convención sobre la evolución geológica de México y I Congreso mexicano de Mineralogía, Memoria, p. 213–215

  • Tardy M, Lapierre H, Freydier C, Coulon C, Gill JB, Mercier de Lepinay B, Beck C, Martinez J, Talavera-Mendoza O, Ortiz E, Stein G, Bourdier JL, Yta M (1994) The Guerrero suspect terrane (western Mexico) and coeval arc terranes (the Greater Antilles and the Western Cordillera of Colombia)—a late Mesozoic intra-oceanic arc accreted to cratonal America during the Cretaceous. Tectonophys 230:49–73

    Article  Google Scholar 

  • Torres-Aguilera JM (2005) Caracterización petrográfica y geouimica del vulcanismo bimodal en el semigraben de Bledos, en el Campo Volcanico de San Luis Pototsi- San Luis Pototsi, Mexico. Tesis de Maestro en Ciencias, Facultad de Ingeneiria, WASLP, p. 159

  • Torres-Hernandez JR, Labarathe-Hernanadez G, Aguillon-Robles A, Gomez-Anguiano M, Mata-Segura JL (2006) The pyroclastic dikes of Tertiary San Luis Potosi Volcanic Field—implications on the emplacement of Panalillo ignimbrite. Geofis Intern 45:243–253

    Google Scholar 

  • Torres-Sánchez D, Verma SJ, Verma SP, Velasco-Tapia F, Torres- Hernandez JR (2017) Petrogenetic and tectonic implication of Oligocene-Miocene voclanic rocks from the Sierra de San Miguelito complex, central Mexico. J S Am Earth Sci. https://doi.org/10.1016/j.jsames.2019.102311

    Article  Google Scholar 

  • Tristán-González M (1986) Estratigrafía y tectónica del graben de Villa de Reyes en los estados de San Luis Potosí y Guanajuato, México. Universidad Autónoma de San Luis Potosí, Instituto de Geología, Folleto Técnico, San Luis, pp 107–191

    Google Scholar 

  • Tristán-González M (1987) Cartografía geológica Hoja Tierra Nueva. San Luis Potosí Universidad Autónona de San Luis Potosí, Instituto de Geología y Metalurgia, Folleto Técnico, San Luis, pp 109–103

    Google Scholar 

  • Tristán-González M (2008) Evolución tectono-magmatica durante el Paleógeno en la porción sur-oriental de la Mesa Central. Tesis Doctoral, Centro de Geociencias, UAM, p. 207

  • Tristán-González M, Labarthe-Hernández G, Aguillón-robles A, Torres-Hernandez JR, Aguierre-Díaz G (2006) Diques piroclásticos en fallas de extensión alimentadores de ignimbritas en el occidente de Campo Volcanico del Rio Santa Maria, SLP. GEOS 26:163

    Google Scholar 

  • Tristán-González M, Aguirre-Díaz JG, Labarathe-Hernanadez G, Aguillon-Robles A (2008) Tectono-volcanic control of fissure type vents for the 28 Ma Panalillo ignimbrite in the Villa de Reyes Graben, San Luis Pototsi, Mexico. Earth Environ Sci. https://doi.org/10.1088/1755-1307/3(1/012026

    Article  Google Scholar 

  • Tristan-Gonzalez M, Aguillon-Robles A, Barboza-Gudino JR, Torres-Hernandez JR, Bellon H, Lopez-Doncel R, Rodriguez-Rios R, Labarthe-Hernandez G (2009) Geocronologia y distribucion espacial del vulcanismo en el Campo Volcanico de San Luis Potosi. Bol Soc Geol Mex 61:287–303

    Article  Google Scholar 

  • Tschernich RW, Wise WS (1982) Paulingite: variations in composition. Am Miner 67:799–803

    Google Scholar 

  • Van Gosen BS, Blitz TA, Plumlee GS, Meeker GP, Pierson MP (2013) Geologic occurrences of erionite in the United States—an emerging national public health concern for respiratory disease. Environ Geochem Health 35:419–430

    Article  Google Scholar 

  • Vezzalini G, Quartieri S, Rossi A, Alberti A (1994) Occurrence of zeolites from Northern Victoria Land (Antarctica). Terra Antarct 1:96–99

    Google Scholar 

  • Waltinger H, Zirkl EJ (1974) Rasterelektronenmikroskopische aufnahmen von Erionit aus Kollnitz, Lavanttal, Karnten. Der Carinth 164(84):124–135

    Google Scholar 

  • Wetherill GW (1956) Discordant uranium-lead ages, I. Trans Am Geophys Union 37:320p

    Article  Google Scholar 

  • White JC, Holt GS, Parker DF, Ren M (2003) Trace-element partitioning between alkali feldspar and peralkalic quartz trachyte to rhyolite magma. Part I: Systematics of trace-element partitioning. Am Miner 88(2–3):316–329

    Article  Google Scholar 

  • Wise WS, Tschernich RW (1976) The chemical compositions and origin of the zeolites offretite, erionite and levyne. Am Miner 61:853–863

    Google Scholar 

  • Yamamoto H, Mucci M, Teshima M (1980) Erionite from Narushima, Nagasaki Prefecture Japan. Sci Rep Dep Geol Kyushu Univ 13:201–207

    Google Scholar 

Download references

Acknowledgements

Field and laboratory costs were defrayed from the project “Convocatoria Institucional de Investigacion Cientifica 2019” 097/2019 granted to PVK, and “Convocatoria Institucional de Fortalecimiento a la Excelencia Académica 2015” 004/2015 granted to YL, RMA and ILA. JROC and RPG were funded under the same project for the thesis of bachelor’s in engineering geology at Departamento de Ingenierias en Minas, Metalurgia y Geologia, Division de Ingenierias, Universidad de Guanajuato, Mexico. The authors wish to thank the team of the laboratory of petrography for thin section preparation and LICAMM, Universidad de Guanajuato to obtain XRD, XRF and SEM–EDS data, and to Dr. Carlos Ortega Obregón, from LEI, Centro de Geociencias, UNAM, for his assistance with U–Pb zircon geochronology analysis. XRF and SEM–EDS costs were defrayed from internal Project of CIIC 187/2021 titulado “Caracterización físico-química y mineralógica de caolines naturales del centro del estado de guanajuato: aplicaciones con base en modificaciones térmicas y mecánicas” bestowed to RMA.

Funding

Field and laboratory costs were defrayed from the project “Convocatoria Institucional de Investigacion Cientifica 2019” 097/2019 granted by the Universidad de Guanajuato, Mexico to PVK, and “Convocatoria Institucional de Fortalecimiento a la Excelencia Académica 2015” 004/2015 granted by Dirección de Apoyo a la Investigación y al Posgrado, Universidad de Guanajuato, to YL, RMA and ILA. XRF and SEM–EDS costs were defrayed from internal Project of CIIC 187/2021 titulado "Caracterización físico-química y mineralógica de caolines naturales del centro del estado de guanajuato: aplicaciones con base en modificaciones térmicas y mecánicas" bestowed to RMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Kshirsagar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kshirsagar, P., Miranda-Avilés, R., Loza-Aguirre, I. et al. Erionite series minerals in felsic volcanic rocks of southern Mesa Central, Guanajuato, Mexico. Environ Earth Sci 80, 674 (2021). https://doi.org/10.1007/s12665-021-09972-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09972-1

Keywords

Navigation