Skip to main content

Advertisement

Log in

Using UAV and satellite image data for analyzing the elevation change of debris-covered glaciers and its associated driving factors

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In this paper, we aim to determine the interactions of debris-covered glacier elevation change with some glacial properties (including ice thickness, surface temperature, debris albedo, and supraglacial lakes) over the largest and the most dynamic glacier in Iran, Alamkouh Glacier, using the repeated acquisition of high-resolution remote sensing data and in-situ measurements during 2010–2018. First, we present the elevation change of Alamkouh glacier using digital elevation models (DEMs) derived from unmanned aerial vehicle (UAV) and LiDAR. Results revealed that on the whole glacier area, the LiDAR and UAV datasets achieved a highly consistent estimate of glacier elevation change at − 1.6 ± 0.2 m during 2010 and 2018. On the local scale, datasets revealed a clear constant between moderate elevation change of the two smaller flow units of the glacier (about − 0.48 ± 0.06 and − 0.37 ± 0.04 m) and significantly more negative elevation change in the main flow unit (− 2.5 ± 0.31 m). Results show that the elevation change of the Alamkouh glacier is jointly influenced by supraglacial lakes and the types of glacier cover. The regions where the rates of thinning are greatest coincide with the regions where the supraglacial lakes exist. In contrast, a weak relationship existed between the elevation change and glacier surface albedo and especially ice thickness. We observed a remarkable negative elevation change (− 6.3 m) of areas connected with supraglacial lakes in comparison with clean ice (− 3.1 m) and debris-covered (− 1.71 m) areas. It is proven that the quantity and area of the supraglacial lakes are the key to understanding the melting rate of the debris-covered glacier. Our observations infer the significant insulating function of debris cover on the Alamkouh glacier and highlight the effect of supraglacial lakes on enhancing glacier wastage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bandyopadhyay D, Singh G, Kulkarni AV (2019) Spatial distribution of decadal ice-thickness change and glacier stored water loss in the upper Ganga basin, India during 2000–2014. Sci Rep 9:16730

    Article  Google Scholar 

  • Berthier E, Arnaud Y, Vincent C, Rémy F (2006) Biases of SRTM in high-mountain areas: implications for the monitoring of glacier volume changes. Geophys Res Lett. https://doi.org/10.1029/2006GL025862

    Article  Google Scholar 

  • Berthier E, Vincent C, Magnússon E, Gunnlaugsson ÁÞ, Pitte P, Le Meur E, Masiokas M, Ruiz L, Pálsson F, Belart JMC, Wagnon P (2014) Glacier topography and elevation changes derived from Pléiades sub-meter stereo images. Cryosphere 8:2275–2291

    Article  Google Scholar 

  • Bhardwaj A, Sam L, Akanksha, Martín-Torres FJ, Kumar R (2016) UAVs as remote sensing platform in glaciology: present applications and future prospects. Remote Sens Environ 175:196–204

    Article  Google Scholar 

  • Bhushan S, Syed TH, Arendt AA, Kulkarni AV, Sinha D (2018) Assessing controls on mass budget and surface velocity variations of glaciers in Western Himalaya. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-27014-y

  • Bliss A, Hock R, Radić V (2014) Global response of glacier runoff to twenty-first century climate change. J Geophys Res Earth Surf 119:717–730

    Article  Google Scholar 

  • Bolch T, Menounos B, Wheate R (2010) Landsat-based inventory of glaciers in western Canada 1985–2005. Remote Sens Environ 114(1):127–137. https://doi.org/10.1016/j.rse.2009.08.015

    Article  Google Scholar 

  • Brock B, Rivera A, Casassa G, Bown F, Acuña C (2017) The surface energy balance of an active ice-covered volcano: Villarrica Volcano, southern Chile. Ann Glaciol 45:104–114

    Article  Google Scholar 

  • Brun F, Berthier E, Wagnon P, Kääb A, Treichler D (2017) A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geosci 10(9):668–673. https://doi.org/10.1038/ngeo2999

    Article  Google Scholar 

  • Brun F, Wagnon P, Berthier E, Shea JM, Immerzeel WW, Kraaijenbrink PDA, Vincent C, Reverchon C, Shrestha D, Arnaud Y (2018) Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier Nepal central Himalaya. The Cryosphere 12(11):3439–3457. https://doi.org/10.5194/tc-12-3439-2018

    Article  Google Scholar 

  • Buri P, Pellicciotti F, Steiner JF, Miles ES, Immerzeel WW (2016) A grid-based model of backwasting of supraglacial ice cliffs on debris-covered glaciers. Ann Glaciol 57:199–211

    Article  Google Scholar 

  • Clayton, A. I. (2012). Remote sensing of subglacial bedforms from the British Ice Sheet using an unmanned aerial system (UAS): Problems and potential. Durham E-thesis Durham University (http://etheses.dur.ac.uk/5907/1/MScR_Thesis_AClayton.pdf (Accessed on 6 August 2015)).

  • Farajzadeh M, Karimi N (2014) Evidence for accelerating glacier ice loss in the Takht’e Solaiman Mountains of Iran from 1955 to 2010. J Mt Sci 11:215–235

    Article  Google Scholar 

  • Fugazza D, Senese A, Azzoni RS, Maugeri M, Maragno D, Diolaiuti GA (2019) New evidence of glacier darkening in the Ortles-Cevedale group from Landsat observations. Global Planet Change 178:35–45

    Article  Google Scholar 

  • Gao F, Masek J, Wolfe R (2009) Automated registration and orthorectification package for Landsat and Landsat-like data processing. J Appl Remote Sens 3:033515

    Article  Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y, Kääb A (2013) Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. The Cryosphere 7(4):1263–1286. https://doi.org/10.5194/tc-7-1263-2013

    Article  Google Scholar 

  • Huang L, Li Z, Han H, Tian B, Zhou J (2018) Analysis of thickness changes and the associated driving factors on a debris-covered glacier in the Tienshan Mountain. Remote Sens Environ 206:63–71

    Article  Google Scholar 

  • Immerzeel WW, Kraaijenbrink PDA, Shea JM, Shrestha AB, Pellicciotti F, Bierkens MFP, de Jong SM (2014) High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sens Environ 150:93–103

    Article  Google Scholar 

  • Jouvet G, Weidmann Y, Kneib M, Detert M, Seguinot J, Sakakibara D, Sugiyama S (2018) Short-lived ice speed-up and plume water flow captured by a VTOL UAV give insights into subglacial hydrological system of Bowdoin Glacier. Remote Sens Environ 217:389–399

    Article  Google Scholar 

  • Jiménez‐Muñoz JC, Sobrino JA (2003) A generalized single‐channel method for retrieving land surface temperature from remote sensing data. J Geophys Res: Atmos 108(D22). https://doi.org/10.1029/2003JD003480

  • Kääb A, Berthier E, Nuth C, Gardelle J, Arnaud Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488:495–498

    Article  Google Scholar 

  • Karimi N, Farokhnia A, Karimi L, Eftekhari M, Ghalkhani H (2012a) Combining optical and thermal remote sensing data for mapping debris-covered glaciers (Alamkouh Glaciers, Iran). Cold Reg Sci Technol 71:73–83

    Article  Google Scholar 

  • Karimi N, Farokhnia A, Shishangosht S, Elmi M, Eftekhari M, Ghalkhani H (2012b) Elevation changes of Alamkouh glacier in Iran since 1955 based on remote sensing data. Inter J Appl Earth Observ Geoinform 19:45–58. https://doi.org/10.1016/j.jag.2012.04.009

    Article  Google Scholar 

  • Karimi N, Farajzadeh M, Moridnejad A, Namdari S (2014) Evidence for mountain glacier changes in semi-arid environments based on remote sensing data. J Indian Soc Remote Sens 42:801–815

    Article  Google Scholar 

  • Ke L, Song C, Yong B, Lei Y, Ding X (2020) Which heterogeneous glacier melting patterns can be robustly observed from space? A multi-scale assessment in southeastern Tibetan Plateau. Remote Sens Environ 242:111777

    Article  Google Scholar 

  • Kirkbride MP, Deline P (2013) The formation of supraglacial debris covers by primary dispersal from transverse englacial debris bands. Earth Surf Proc Land 38:1779–1792

    Article  Google Scholar 

  • Kraaijenbrink P, Meijer SW, Shea JM, Pellicciotti F, De Jong SM, Immerzeel WW (2016a) Seasonal surface velocities of a Himalayan glacier derived by automated correlation of unmanned aerial vehicle imagery. Ann Glaciol 57:103–113

    Article  Google Scholar 

  • Kraaijenbrink PDA, Shea JM, Pellicciotti F, de Jong SM, Immerzeel WW (2016b) Object based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier. Remote Sens Environ 186:581–595

    Article  Google Scholar 

  • Lo Vecchio A, Lenzano MG, Durand M, Lannutti E, Bruce R, Lenzano L (2018) Estimation of surface flow speed and ice surface temperature from optical satellite imagery at Viedma glacier, Argentina. Global Planet Change 169:202–213

    Article  Google Scholar 

  • Mihalcea C, Brock BW, Diolaiuti G, D’Agata C, Citterio M, Kirkbride MP, Cutler MEJ, Smiraglia C (2008) Using ASTER satellite and ground-based surface temperature measurements to derive supraglacial debris cover and thickness patterns on Miage Glacier (Mont Blanc Massif, Italy). Cold Reg Sci Technol 52:341–354

    Article  Google Scholar 

  • Miles ES, Pellicciotti F, Willis IC, Steiner JF, Buri P, Arnold NS (2016) Refined energy-balance modelling of a supraglacial pond, Langtang Khola Nepal. Ann Glaciol 57:29–40

    Article  Google Scholar 

  • Nicholson L, Benn DI (2017) Calculating ice melt beneath a debris layer using meteorological data. J Glaciol 52:463–470

    Article  Google Scholar 

  • Nuimura T, Fujita K, Yamaguchi S, Sharma RR (2012) Elevation changes of glaciers revealed by multitemporal digital elevation models calibrated by GPS survey in the Khumbu region Nepal Himalaya 1992-2008. J Glaciol 58(210):648–656. https://doi.org/10.3189/2012JoG11J061

    Article  Google Scholar 

  • Nuth C, Kääb A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 5:271–290

    Article  Google Scholar 

  • Oerlemans J, Giesen RH, Van Den Broeke MR (2009) Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch Switzerland). J Glaciol 55(192):729–736. https://doi.org/10.3189/002214309789470969

    Article  Google Scholar 

  • Paul F, Bolch T, Kääb A, Nagler T, Nuth C, Scharrer K, Shepherd A, Strozzi T, Ticconi F, Bhambri R, Berthier E, Bevan S, Gourmelen N, Heid T, Jeong S, Kunz M, Lauknes TR, Luckman A, Merryman Boncori JP, Moholdt G, Muir A, Neelmeijer J, Rankl M, VanLooy J, Van Niel T (2015) The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sens Environ 162:408–426

    Article  Google Scholar 

  • Pellicciotti F, Stephan C, Miles E, Herreid S, Immerzeel WW, Bolch T (2017) Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from 1974 to 1999. J Glaciol 61:373–386

    Article  Google Scholar 

  • Ragettli S, Bolch T, Pellicciotti F (2016) Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal. Cryosphere 10:2075–2097

    Article  Google Scholar 

  • Reid TD, Brock BW (2017) Assessing ice-cliff backwasting and its contribution to total ablation of debris-covered Miage glacier, Mont Blanc massif, Italy. J Glaciol 60:3–13

    Article  Google Scholar 

  • Rippin DM, Pomfret A, King N (2015) High resolution mapping of supra-glacial drainage pathways reveals link between micro-channel drainage density, surface roughness and surface reflectance. Earth Surf Proc Land 40:1279–1290

    Article  Google Scholar 

  • Rosenau R, Scheinert M, Dietrich R (2015) A processing system to monitor Greenland outlet glacier velocity variations at decadal and seasonal time scales utilizing the Landsat imagery. Remote Sens Environ 169:1–19. https://doi.org/10.1016/j.rse.2015.07.012

    Article  Google Scholar 

  • Rossini M, Di Mauro B, Garzonio R, Baccolo G, Cavallini G, Mattavelli M, De Amicis M, Colombo R (2018) Rapid melting dynamics of an alpine glacier with repeated UAV photogrammetry. Geomorphology 304:159–172. https://doi.org/10.1016/j.geomorph.2017.12.039

    Article  Google Scholar 

  • Salerno F, Thakuri S, Tartari G, Nuimura T, Sunako S, Sakai A, Fujita K (2017) Debris-covered glacier anomaly? Morphological factors controlling changes in the mass balance, surface area, terminus position, and snow line altitude of Himalayan glaciers. Earth Planet Sci Lett 471:19–31

    Article  Google Scholar 

  • Santin I, Colucci RR, Žebre M, Pavan M, Cagnati A, Forte E (2019) Recent evolution of Marmolada glacier (Dolomites, Italy) by means of ground and airborne GPR surveys. Remote Sens Environ 235:111442

    Article  Google Scholar 

  • Verhoeven G (2011) Taking computer vision aloft—archaeological three-dimensional reconstructions from aerial photographs with photoscan. Archaeol Prospect 18:67–73

    Article  Google Scholar 

  • Vincent C, Wagnon P, Shea JM, Immerzeel WW, Kraaijenbrink P, Shrestha D, Soruco A, Arnaud Y, Brun F, Berthier E, Sherpa SF (2016) Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier Nepal. Cryosphere 10:1845–1858

    Article  Google Scholar 

  • Wang P, Li Z, Luo S, Bai J, Huai B, Wang F, Li H, Wang W, Wang L (2015) Five decades of changes in the glaciers on the Friendship Peak in the Altai Mountains, China: changes in area and ice surface elevation. Cold Reg Sci Technol 116:24–31

    Article  Google Scholar 

  • Wang P, Li Z, Zhou P, Li H, Yu G, Xu C, Wang L (2018) Long-term change in ice velocity of Urumqi Glacier No. 1, Tian Shan China. Cold Reg Sci Technol 145:177–184

    Article  Google Scholar 

  • Wendt A, Mayer C, Lambrecht A, Floricioiu D (2017) A glacier surge of bivachny glacier, Pamir Mountains, observed by a time series of high-resolution digital elevation models and glacier velocities. Remote Sens 9(4):388. https://doi.org/10.3390/rs9040388

    Article  Google Scholar 

  • Whitehead K, Moorman BJ, Hugenholtz CH (2013) Brief communication: low cost, on-demand aerial photogrammetry for glaciological measurement. Cryosphere 7(6):1879–1884. https://doi.org/10.5194/tc-7-1879-2013

    Article  Google Scholar 

  • Wu Y, Wang N, He J, Jiang X (2015) Estimating mountain glacier surface temperatures from Landsat-ETM+ thermal infrared data: a case study of Qiyi glacier, China. Remote Sens Environ 163:286–295

    Article  Google Scholar 

  • Wu Y, Wang N, Li Z, Chen A, Guo Z, Qie Y (2019) The effect of thermal radiation from surrounding terrain on glacier surface temperatures retrieved from remote sensing data: a case study from Qiyi Glacier, China. Remote Sens Environ 231:111267

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Water Research Institute (WRI) for the ministration of datasets and for providing the computational and fieldwork facilities. Valuable discussions with Dr. Mortaza Eftekhari and Dr. Reza Roozbahani both from Water Research Institute. We would also like to thank for Landsat data that was freely available from USGS. Finally, we want to thank Maryam Rashtbari and Hossein Dehban for their help in the work field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neamat Karimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, N., Farokhnia, A., Sheshangosht, S. et al. Using UAV and satellite image data for analyzing the elevation change of debris-covered glaciers and its associated driving factors. Environ Earth Sci 80, 577 (2021). https://doi.org/10.1007/s12665-021-09899-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09899-7

Keywords

Profiles

  1. Masoud Bahreinimotlagh