Skip to main content
Log in

High-temperature response characteristics of loess porosity and strength

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Soil protection is a critical issue in the UN Sustainable Development Goals (SDGs). In this light, understanding the changes in the micropore structure of loess—which have a great influence on its macroscopic physico-mechanical properties—is crucial. Temperature is one of the main factors affecting the porous structure of loess; to ascertain the effects of high temperatures on the porous distribution of loess, Malan loess was sampled from the Shaanxi Province of China. The changes in porous characteristics of the loess samples after being subjected to high temperatures were tested using a non-destructive method—nuclear magnetic resonance (NMR)—and the tensile failure load of the loess at different temperatures were obtained. The results show that NMR can be used to characterize the variations in loess pores with temperature. In general, the porosity of loess decreases with increases in temperature. For temperatures above 600 °C, the pore radius begins to increase with increases in temperature; further, pore connectivity is improved at high temperatures, between 200 °C and 800 °C. The tensile failure load of loess not only increases exponentially with increases in temperature, but also there is an exponential relationship between porosity and tensile failure load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aubertin M, Li L (2003) A general relationship between porosity and uniaxial strength of engineering materials. Rev Can De Génie Civ 30(4):644–658

    Article  Google Scholar 

  • Balek V, Pérez-Rodríguez JL, Pérez-Maqueda LA, Ubrt J, Poyato J (2007) Thermal behaviour of ground vermiculite. J Therm Anal Calorim 88(3):819–823

    Article  Google Scholar 

  • Bellotto M (1994) High temperature phase transitions in kaolinite: the influence of disorder and kinetics on the reaction path. Mater Sci Forum 166–169(1):3–22

    Article  Google Scholar 

  • Brindley GW, Maroney DM, Udagawa S (1961) High-temperature reactions of clay mineral mixtures and their ceramic properties: iii, shrinkage and porosity in relation to initial mineralogy. J Am Ceram Soc 44:42–47

    Article  Google Scholar 

  • Cerdà A, Borja MEL, Úbeda X, Martínez-Murillo JF, Keesstra S (2017) Pinus halepensis M. versus Quercus ilex subsp. Rotundifolia L. runoff and soil erosion at pedon scale under natural rainfall in Eastern Spain three decades after a forest fire. Forest Ecol Manag 400:447–456

    Article  Google Scholar 

  • Cutmore NG, Sowerby BD, Lynch LJ, Webster DS (1986) Determination of moisture in black coal using pulsed nuclear magnetic resonance spectrometry. Fuel 65:34–39

    Article  Google Scholar 

  • D’Orazio F, Tarczon JC, Halperin WP, Eguchi K, Mizusaki T (1989) Application of nuclear magnetic resonance pore structure analysis to porous silica glass. J Appl Phys 65(2):742–751

    Article  Google Scholar 

  • Davies S, Packer KJ (1990) Pore-size distributions from nuclear magnetic resonance spin-lattice relaxation measurements of fluid-saturated porous solids. i. theory and simulation. J Appl Phys 67(6):3163–3170

    Article  Google Scholar 

  • Ellis DV, Singer JM (2007) Nuclear magnetic logging. Well Log Earth Sci Chap 16:415–478

    Google Scholar 

  • Francos M, Úbeda X, Tort J, Panareda JM, Cerdà A (2016) The role of forest fire severity on vegetation recovery after 18 years. Implications for forest management of Quercus suber L. in Iberian Peninsula. Global Planet Change 145:11–16

    Article  Google Scholar 

  • Frosch GP, Tillich JE, Haselmeier R, Holz M, Althaus E (2000) Probing the pore space of geothermal reservoir sandstones by nuclear magnetic resonance. Geothermics 29:671–687

    Article  Google Scholar 

  • Gao GR (1980) The microstructure of loess in China. Sci Bull 20:945–948

    Google Scholar 

  • Gao S, Chapman WG, House W (2009) Application of low field nmr T2 measurements to clathrate hydrates. J Magn Reson 197(2):208–212

    Article  Google Scholar 

  • Gao H, Zheng YR, Feng XT, Zeng J (2010) A study of the energy yield criterion of geomaterials. Eng Sci 8(03):12-20+40

    Google Scholar 

  • Gill SPA (2009) Pore migration under high temperature and stress gradients. Int J Heat Mass Tran 52(5–6):1123–1131

    Article  Google Scholar 

  • Goncharov SA (2012) Mechanism of the thermal expansion of rocks. J Helminthol 48(4):69–74

    Google Scholar 

  • Hou XW, Zhu YM, Wang Y, Liu Y (2019) Experimental study of the interplay between pore system and permeability using pore compressibility for high rank coal reservoirs. Fuel 254:115712

    Article  Google Scholar 

  • Juang CH, Holtz RD (1986) Fabric, pore size distribution, and permeability of sandy soils. J Geotech Eng 112(9):855–868

    Article  Google Scholar 

  • Keesstra SD, Bouma J, Wallinga J, Tittonell P, Smith P, Cerdà A, Montanarella L, Quinton JN, Pachepsky Y, Putten WHVD, Bardgett RD, Moolenaar S, Mol G, Jansen B, Fresco LO (2016) The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2:111–128

    Article  Google Scholar 

  • Keesstra S, Mol G, De Leeuw J, Okx J, De Cleen M, Visser S (2018) Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 7(4):133

    Article  Google Scholar 

  • King HE, Plümper O, Putnis CV, O’Neill HSC, Klemme S, Putnis A (2017) Mineral surface rearrangement at high temperatures: implications for extraterrestrial mineral grain reactivity. ACS Earth Space Chem 1(2):113–121

    Article  Google Scholar 

  • Knapp RB, Knight JE (1977) Differential thermal expansion of pore fluids: Fracture propagation and microearthquake production in hot pluton environments. J Geophys Res 82(17):2515–2522

    Article  Google Scholar 

  • Knight JC (2005) Porcellanite-CaCO3 high temperature reaction: phases, microstructure, microhardness. Ceram Int 31(6):839–844

    Article  Google Scholar 

  • Lapierre C, Leroueil S, Locat J (1990) Mercury intrusion and permeability of Louiseville clay. Can Geotech J 27(6):761–773

    Article  Google Scholar 

  • Li JL, Li BQ (2017a) Evolution features of coal matrix porosity with the variation in temperature and stress. IOP Conf Ser Mater Sci Eng 191(012050):1–9

    Google Scholar 

  • Li X, Li L (2017b) Quantification of the pore structures of Malan loess and the effects on loess permeability and environmental significance, Shaanxi Province, China: an experimental study. Environ Earth Sci 76(523):1–14

    Google Scholar 

  • Li YL, Wang TH, Su LJ (2015) Determination of bound water content of loess soils by isothermal adsorption and thermogravimetric analysis. Soil Sci 180(3):90–96

    Article  Google Scholar 

  • Li H, Lin BQ, Yang W, Zheng CS, Hong YD, Gao YB, Liu T, Wu SL (2016) Experimental study on the petrophysical variation of different rank coals with microwave treatment. Int J Coal Geol 154–155:82–91

    Article  Google Scholar 

  • Li YR, He SD, Deng XH, Xu YX (2018) Characterization of macropore structure of malan loess in nw china based on 3d pipe models constructed by using computed tomography technology. J Asian Earth Sci 154:271–279

    Article  Google Scholar 

  • Lipsicas M, Banavar JR, Willemsen J (1986) Surface relaxation and pore sizes in rocks-a nuclear magnetic resonance analysis. Appl Phys Lett 48(22):1544–1546

    Article  Google Scholar 

  • Liu DS (2002) Loess and environment (in Chinese). J Xi’an Jiaotong U (Soc Sci) 22(4):7–12

    Google Scholar 

  • Liu CQ, Masuda A, Okada A, Yabuki S, Fan ZL (1993) A geochemical study of loess and desert sand in northern china: implications for continental crust weathering and composition. Chem Geol 106(3–4):359–374

    Article  Google Scholar 

  • Liu HM, Wang LM, Gao P (2014) The mechanical properties of cement reinforced loess and pore microstructure characteristics. Appl Mech Mater 527:25–30

    Article  Google Scholar 

  • Liu Z, Liu F, Ma F, Wang M (2015) Collapsibility, composition, and microstructure of a loess in China. Can Geotech J 53:673–686

    Article  Google Scholar 

  • Morsy MS, Galal AF, Abo-El-Enein SA (1998) Effect of temperature on phase composition and microstructure of artificial pozzolana-cement pastes containing burnt kaolinite clay. Cement Concrete Res 28(8):1157–1163

    Article  Google Scholar 

  • Moskvitz N, Gaidos E (2011) Differentiation of planetesimals and the thermal consequences of melt migration. Meteorit Planet Sci 46(6):903–918

    Article  Google Scholar 

  • Ng CWW, Sadeghi H, Hossen SB, Chiu CF, Alonso EE, Baghbanrezvan S (2016) Water retention and volumetric characteristics of intact and re-compacted loess. Can Geotech J 53(8):1258–1269

    Article  Google Scholar 

  • Nishiyama N, Yokoyama T (2017) Permeability of porous media: role of the critical pore size. J Geophys Res-Sol Ea 122:1–9

    Google Scholar 

  • Novara A, Gristina L, Bodí MB, Cerdà A (2011) The impact of fire on redistribution of soil organic matter on a Mediterranean hillslope under maquia vegetation type. Land Degrad Dev 22(6):530–536

    Article  Google Scholar 

  • Pal V, Singh M, Gupta BRK (1999) Analysis of thermal expansion coefficients under the effect of high temperature for minerals. J Phys Chem Sol 60(12):1895–1896

    Article  Google Scholar 

  • Pan X, Richard S, Tappin AD, Worsfold PJ, Achterberg EP (2005) Simultaneous determination of dissolved organic carbon and total dissolved nitrogen on a coupled high-temperature combustion total organic carbon-nitrogen chemiluminescence detection (htc toc-ncd) system. J Autom Method Manag 4:240–246

    Google Scholar 

  • Perkins EL, Lowe JP, Edler KJ, Tanko N, Rigby SP (2008) Determination of the percolation properties and pore connectivity for mesoporous solids using nmr cryodiffusometry. Chem Eng Sci 63(7):1929–1940

    Article  Google Scholar 

  • Rice RW (1989) Relation of tensile strength-porosity effects in ceramics to porosity dependence of Young’s modulus and fracture energy, porosity character and grain size. Mater Sci Eng A 112:215–224

    Article  Google Scholar 

  • Rodrigo-Comino J, Senciales JM, Cerdà A, Brevik EC (2018) The multidisciplinary origin of soil geography: a review. Earth Sci Rev 177:114–123

    Article  Google Scholar 

  • Salesa D, Amodio AM, Rosskopf CM, Garfì V, Terol E, Cerdà A (2020) Three topographical approaches to survey soil erosion on a mountain trail affected by a forest fire: Barranc de la Manesa, Llutxent. Eastern Iberian Peninsula. J Environ Manage 264:110491

    Article  Google Scholar 

  • Sasanian S, Newson TA (2013) Use of mercury intrusion porosimetry for microstructural investigation of reconstituted clays at high water contents. Eng Geol 158:15–22

    Article  Google Scholar 

  • Singh KY, Gupta BRK (2003) A simple approach to analyse the thermal expansion in minerals under the effect of high temperature. Phys B 334(3–4):266–271

    Google Scholar 

  • Song YG, Chen XL, Qian LB, Li CX, Li Y, Li XX, Chang H, An ZS (2014) Distribution and composition of loess sediments in the ili basin, central asia. Quatern Int 334–335:61–73

    Article  Google Scholar 

  • Stuart R (2008) Thermal characterization of the clay binder of heritage sydney sandstones. J Therm Anal Calorim 92(1):97–100

    Article  Google Scholar 

  • Sun Q, Lü C, Cao LW, Li WC, Geng JS, Zhang WQ (2016) Thermal properties of sandstone after treatment at high temperature. Int J Rock Mech Min Sci 85:60–66

    Article  Google Scholar 

  • Thiéblot L, Roux J, Richet P (1998) High-temperature thermal expansion and decomposition of garnets. Eur J Mineral 10(1):7–15

    Article  Google Scholar 

  • Tyler SW, Wheatcraft SW (1992) Fractal scaling of soil particle-size distributions: analysis and limitations. Soil Sci Soc Am J 56:362–369

    Article  Google Scholar 

  • Visser S, Keesstra S, Maas G, De Cleen M (2019) Soil as a basis to create enabling conditions for transitions towards sustainable land management as a key to achieve the SDGs by 2030. Sustainability 11(23):6792

    Article  Google Scholar 

  • Xia J, Huang GL, Liu ZT, Chen XM (2007) Cyclic variability in chemical composition and swelling-shrinkage properties of the xiashu loess stratum near nanjing, china. Pedosphere 17(5):672

    Article  Google Scholar 

  • Yao YB, Liu DM (2012) Comparison of low-field nmr and mercury intrusion porosimetry in characterizing pore size distributions of coals. Fuel 95:152–158

    Article  Google Scholar 

  • Yao YB, Liu DM, Che Y, Tang DZ, Tang SH, Huang WH (2010) Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR). Fuel 89(7):1371–1380

    Article  Google Scholar 

  • Zhang Y, Sun Q, Li J, Zhang W (2015a) Pore and mechanical characteristics of high-temperature bakeed clay. Chin J Rock Mech Eng 34(7):1480–1488

    Google Scholar 

  • Zhang Y, Sun Q, Li J, Zhang WQ (2015b) Pore and mechanical characteristics of high-temperature bakeed clay (in Chinese). Chin J Rock Mech Eng 34(7):1480–1488

    Google Scholar 

  • Zhong ZL, Liu YX, Liu XR, Li XY, Wang S (2015) Influence of moisture content on shearing strength of unsaturated undisturbed quaternary system middle pleistocene. J Cent South Univ 22(07):2776–2782

    Article  Google Scholar 

  • Zhou H, Liu HT, Hu DW, Yang FJ, Lu JJ, Zhang F (2016) Anisotropies in mechanical behaviour, thermal expansion and p-wave velocity of sandstone with bedding planes. Rock Mech Rock Eng 49:4497–4504

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Opening Project of Geological Research Institute for Coal Green Mining (No. MTy2019-13), National Science Foundation of China (No. 41672279), Natural Science Basic Research Program of Shaanxi Province(No. 2020JQ-744), China Postdoctoral Science Foundation (No. 2020M673443) and the Excellent Doctoral Dissertation Cultivation Program of Xi’an University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaofei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Sun, Q., Wang, N. et al. High-temperature response characteristics of loess porosity and strength. Environ Earth Sci 80, 547 (2021). https://doi.org/10.1007/s12665-021-09799-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09799-w

Keywords

Navigation