Skip to main content

Influence of topography on sediment dynamics and soil chemical properties in a Mediterranean forest historically affected by wildfires: NE Iberian Peninsula

Abstract

Wildfires are a major concern in Mediterranean areas and play an important role in the pedogenic process, as they usually increase soil credibility due to the destruction of vegetation cover and soil structure. On top of these factors, slope and aspect also determine the degree of retention and availability of water and nutrients in soils after fire, which in turn influence the recovery of vegetation and its protective effect against erosion. This work aims to describe the effects of slope and aspect on soil development in an area historically affected by wildfires. The study area is located in Ódena (NE Iberian Peninsula) in a Mediterranean forest. Four representative soil profiles were sampled from a south-facing steep slope, north-facing steep slope, south-facing gentle slope and north-facing gentle slope. In each profile 11 samples were sampled. The amount of soil organic matter (SOM), inorganic C (IC) and total N (TN) as well as cation availability, pH, and electrical conductivity (EC) were determined for all the horizons of each profile. Results showed that IC, TN, C/N ratio, pH, EC and K were mainly affected by aspect, whereas organic matter, C/N ratio, pH, EC, Ca and Mg were especially influenced by slope. Slope determined the amount and availability of SOM and nutrients, which highlights the need to prioritise the management of areas susceptible to erosion in order to ensure soil and ecosystem functionality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Alcañiz M, Outeiro L, Francos M, Úbeda X (2018) Effects of prescribed fires on soil properties: a review. Sci Total Environ 613:944–957

    Google Scholar 

  2. Al-Gburi HFA, Al-Tawash BS, Al-Lafta HS (2017) Environmental assessment of Al-Hammar Marsh, Southern Iraq. Helyon. https://doi.org/10.1016/j.heliyon.2017.e00256

    Article  Google Scholar 

  3. Armas-Herrera CM, Pérez-Lambán F, Badía-Villas D, Peña-Monné JL, González-Pérez JA, Millán JVP, Gracia MA (2019) Pyrogenic organic matter from paleo-fires during the holocene: a case study in a sequence of buried soils at the Central Ebro Basin (NE Spain). J Environ Manag 241:558–566

    Google Scholar 

  4. Armstrong A, Quinton JN, Francis B, Heng BCP, Sander GC (2011) Controls over nutrient dynamics in overland flows on slopes representative of agricultural land in North West Europe. Geoderma 164:2–10. https://doi.org/10.1016/j.geoderma.2011.04.011

    Article  Google Scholar 

  5. Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47(2):151–163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x

    Article  Google Scholar 

  6. Bellin N, Vanacker V, Van Wesemael B, Solè-Benet A, Bakker MM (2011) Natural and anthropogenic controls on soil erosion in the Internal Betic Cordillera (southeast Spain). CATENA 87:190–200. https://doi.org/10.1016/j.catena.2011.05.022

    Article  Google Scholar 

  7. Billings SA, Richter DB, Ziegler SE, Prestegaard K, Wade AM (2019) Distinct contributions of eroding and depositional profiles to land-atmosphere CO2 exchange in two contrasting forests. Front Earth Sci 7:36. https://doi.org/10.3389/feart.2019.00036

    Article  Google Scholar 

  8. Blake WH, Wallbrink PJ, Doerr SH, Shakesby RA, Humphreys GS, English P, Wilkinson S (2006) Using geochemical stratigraphy to indicate post-fire sediment and nutrient fluxes into a water supply reservoir, Sydney, Australia. IAHS Publication, pp 306, 363–370

  9. Boerner RE (1984) Nutrient fluxes in litterfall and decomposition in four forests along a gradient of soil fertility in southern Ohio. Can J for Res 14(6):794–802

    Google Scholar 

  10. Brandt LA, King JY, Hobbie SE, Milchunas DG, Sinsabaugh RL (2010) The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient. Ecosystems 13(5):765–781

    Google Scholar 

  11. Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143(1):1–10

    Google Scholar 

  12. Certini G (2014) Fire as a soil-forming factor. Ambio 43:191–195. https://doi.org/10.1007/s13280-013-0418-2

    Article  Google Scholar 

  13. Conedera M, Tinner W, Neff C, Meurer M, Dickens AF, Krebs P (2009) Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quat Sci Rev 28(5–6):555–576

    Google Scholar 

  14. Coppus R, Imeson AC (2002) Extreme events controlling erosion and sediment transport in a smi-arid sub-andean valley. Earth Surf Proc Land 27:1365–1375

    Google Scholar 

  15. Fan H, Wu J, Liu W, Yuan Y, Hu L, Cai Q (2015) Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant Soil 392(1–2):127–138

    Google Scholar 

  16. Fernández-García V, Marcos E, Fernández-Guisuraga JM, Taboada A, Suárez-Seoane S, Calvo L (2019a) Impact of burn severity on soil properties in a Pinus pinaster ecosystem immediately after fire. Int J Wildland Fire 28:354–364. https://doi.org/10.1071/WF18103

    Article  Google Scholar 

  17. Fernández-García V, Miesel J, Baeza MJ, Marcos E, Calvo L (2019b) Wildfire effects on soil properties in fire-prone pine ecosystems: Indicators of burn severity legacy over the medium term after fire. Appl Soil Ecol 135:147–156. https://doi.org/10.1016/j.apsoil.2018.12.002

    Article  Google Scholar 

  18. Fernández-García V, Marcos E, Reyes O, Calvo L (2020a) Do fire regime attributes affect soil biochemical properties in the same way under different environmental conditions? Forests 11:274. https://doi.org/10.3390/f11030274

    Article  Google Scholar 

  19. Fernández-García V, Marcos E, Fulè PZ, Reyes O, Santana VM, Calvo L (2020b) Fire regimes shape diversity and traits of vegetation under different climatic conditions. Sci Total Environ 716:137137. https://doi.org/10.1016/j.scitotenv.2020.137137

    Article  Google Scholar 

  20. Fonseca F, de Figueiredo T, Nogueira C, Queirós A (2017) Effect of prescribed fire on soil properties and soil erosion in a Mediterranean mountain area. Geoderma 307:172–180. https://doi.org/10.1016/j.geoderma.2017.06.018

    Article  Google Scholar 

  21. Francos M, Úbeda X (2021) Prescribed fire management. Curr Opin Env Sci Health 21:100250. https://doi.org/10.1016/j.coesh.2021.100250

    Article  Google Scholar 

  22. Francos M, Pereira P, Alcañiz M, Úbeda X (2018a) Post-wildfire management effects on short-term evolution of soil properties (Catalonia, Spain, SW-Europe). Sci Total Environ 633:285–292

    Google Scholar 

  23. Francos M, Úbeda X, Pereira P, Alcañiz M (2018b) Long-term impact of wildfire on soils exposed to different fire severities. A case study in Cadiretes Massif (NE Iberian Peninsula). Sci Total Environ 615:664–671. https://doi.org/10.1016/j.scitotenv.2017.09.311

    Article  Google Scholar 

  24. Francos M, Úbeda X, Pereira P (2019) Impact of torrential rainfall and salvage logging on post-wildfire soil properties in NE Iberian Peninsula. CATENA 177:210–218

    Google Scholar 

  25. Francos M, Pereira P, Úbeda X (2020a) Effect of pre- and post-wildfire management practices on plant recovery after a wildfire in Northeast Iberian Peninsula. J for Res 31(5):1647–1661. https://doi.org/10.1007/s11676-019-00936-7

    Article  Google Scholar 

  26. Francos M, Úbeda X, Pereira P (2020b) Long-term forest management after wildfire (Catalonia, NE Iberian Peninsula). J for Res 31(1):269–278

    Google Scholar 

  27. García-Ruiz JM, Nadal-Romero E, Lana-Renault N, Beguería S (2013) Erosion in Mediterranean landscapes: changes and future challenges. Geomorphology 198:20–36. https://doi.org/10.1016/j.geomorph.2013.05.023

    Article  Google Scholar 

  28. Girona-García A, Ortiz-Perpiñá O, Badía-Villas D (2019) Dynamics of topsoil carbon stocks after prescribed burning for pasture restoration in shrublands of the Central Pyrenees (NE-Spain). J Environ Manag 233:695–705. https://doi.org/10.1016/j.jenvman.2018.12.057

    Article  Google Scholar 

  29. Girona-García A, Vieira DCS, Silva J, Fernández C, Robichaud PR, Keizer JJ (2021) Effectiveness of post-fire soil erosion mitigation treatments: a systematic review and meta-analysis. Earth Sci Revs 217:103611. https://doi.org/10.1016/j.earscirev.2021.103611

    Article  Google Scholar 

  30. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 5:101–110

    Google Scholar 

  31. Hempfling R, Schulten HR (1990) Chemical characterization of the organic matter in forest soils by Curie point pyrolysis-GC/MS and pyrolysis-field ionization mass spectrometry. Org Geochem 15(2):131–145

    Google Scholar 

  32. Hiederer R (2009) Distribution of organic carbon in soil profile data. Office for Official Publications of the European Communities, p 126

  33. Hilton RG, Galy A, West AJ, Hovius N, Roberts GG (2013) Geomorphic control on the δ15N of mountain forests. Biogeosciences 10:1693–1705

    Google Scholar 

  34. Hook PB, Burke IC (2000) Biogeochemistry in a shortgrass landscape: control by topography, soil texture, and microclimate. Ecology 81(10):2686–2703

    Google Scholar 

  35. Ismail-Meyer K, Stolt MH, Lindbo DL (2018) Soil organic matter. In: Stoops G, Vera M, Mees F (eds) Interpretation of micromorphological features of soils and regoliths, 2nd edn, Elsevier, pp 471–512

  36. Jendoubi D, Liniger H, Speranza CI (2019) Impacts of land use and topography on soil organic carbon in a Mediterranean landscape (north-western Tunisia). Soil 5:239–251. https://doi.org/10.5194/soil-5-239-2019

    Article  Google Scholar 

  37. Jenny H (1994) Factors of soil formation: a system of quantitative pedology, 1st edn. Courier Corporation, McGraw-Hill Co, New York

  38. Jenny H (2012) The soil resource: origin and behavior, vol 37. Springer Science & Business Media, Berlin

    Google Scholar 

  39. Jia S, He X, Wei F (2009) Soil organic carbon loss under different slope gradients in loess hilly region. Wuhan Univ J Natural Sci 12:695–698

    Google Scholar 

  40. Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW (2012) Fire in Mediterranean ecosystems. Cambridge University Press, Cambridge, p 515

    Google Scholar 

  41. Knudsen D, Petersen GA, Pratt PF (1982) Lithium, sodium and potassium. In: Dinauer RC (ed) Methods of soil analysis. Part 2. Chemical and microbiological properties. ASA, SSSA Madison, Wisconsin (USA), pp 225–246

  42. Komolafe AA, Olorunfemi IE, Oloruntoba C, Akinluyi FO (2021) Spatial prediction of soil nutrients from soil, topography and environmental attributes in the northern part of Ekiti State, Nigeria. Rem Sens Appl Society Environ 21:100450

    Google Scholar 

  43. Köppen W (1900) Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geogr Zeitschrift 6(593–611):657–679

    Google Scholar 

  44. Koulouri M, Giourga C (2007) Land aba and slope gradient as key factors of soil erosion in Mediterranean terraced lands. Catena 69(3):274–281

  45. Kramer MG, Lajtha K, Aufdenkampe AK (2017) Depth trends of soil organic matter C/N and 15N natural abundance controlled by association with minerals. Biogeochemistry 136:237–248

    Google Scholar 

  46. Kutiel P (1992) Slope aspect effect on soil and vegetation in a Mediterranean ecosystem. Israel J Bot 41:243–250. https://doi.org/10.1080/0021213X.1992.10677231

    Article  Google Scholar 

  47. Li T, Liang J, Chen X, Wang H, Zhang S, Pu Y, Xu X, Li H, Xu J, Wu X, Liu X (2021) The interacting roles and relative importance of climate, topography, soil properties and mineralogical composition on soil potassium variations at a national scale in China. CATENA 196:104875

    Google Scholar 

  48. Lin S, Li Y, Li Y, Chen Q, Wang Q, He K (2021) Influence of tree size, local forest structure, topography, and soil resource availability on plantation growth in Qinghai Province, China. Ecol Indic 120:106957

    Google Scholar 

  49. Liu J, Qiu L, Wang X, Wei X, Gao H, Zhang Y, Cheng J (2018) Effects of wildfire and topography on soil nutrients in a semiarid restored grassland. Plant Soil 428(1–2):123–136

    Google Scholar 

  50. Liu Q, Sterck FJ, Medina-Vega JA, Sha LQ, Cao M, Bongers F, Zhang JL, Poorter L (2021) Soil nutrients, canopy gaps and topography affect liana distribution in a tropical seasonal rain forest in southwestern China. J Veg Sci 32(1):12951

    Google Scholar 

  51. Losche CK, McCracken RJ, Davey CB (1970) Soils of steeply sloping landscapes in the southern Appalachian Mountains. Soil Sci Soc Am J 34(3):473–478

    Google Scholar 

  52. Lozano-García B, Parras-Alcántara L, Brevik E (2016) Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean. Sci Total Environ 544:963–970

    Google Scholar 

  53. Måren IE, Karki S, Prajapati C, Yadav RK, Shrestha BB (2015) Facing north or south: does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-Himalayan valley? J Arid Environ 121:112–123

    Google Scholar 

  54. McBratney AB, Mendonça-Santos ML, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52. https://doi.org/10.1016/S0016-7061(03)00223-4

    Article  Google Scholar 

  55. McNab WH (1993) A topographic index to quantify the effect of mesoscale landform on site productivity. Can J for Res 23(6):1100–1107

    Google Scholar 

  56. Nicolardot B, Recous S, Mary B (2001) Simulation of C and N mineralisation during crop residue decomposition: a simple dynamic model based on the C:N ratio of the residues. Plant Soil 228(1):83–103

    Google Scholar 

  57. Osborne BB, Nasto MK, Asner GP, Balzotti CS, Cleveland CC, Sullivan BW, Taylor PG, Townsend AR, Porder S (2017) Climate, topography, and canopy chemistry exert hierarchical control over soil N cycling in a Neotropical lowland forest. Ecosystems 20(6):1089–1103

    Google Scholar 

  58. Panareda-Clopés JM, Nuet-Badia J (1993) Tipología y cartografía corológica de las plantas vasculares de Montserrat (Cordillera Prelitoral Catalana). Rev Geogr 27:33–58

    Google Scholar 

  59. Pellegrini S, Agnelli AE, Andrenelli MC, Barbetti R, Madrau S, Priori S, Costantini EAC (2017) Soil organic carbon in Mediterranean cropping systems and the influence of climate change on soil physical qualities. In: Proceedings of the global symposium on soil organic carbon 2017, 21–23 March 2017, Rome, Italy. Food and Agriculture Organization of the United Nations (FAO), pp 259–263

  60. Pellegrini A, Ahlström A, Hobbie SE, Reich PB, Nieradzik LP, Staver AC, Scharenbroch BC, Jumpponen A, Anderegg WRL, Randerson JT, Jackson RB (2018) Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553:194–198. https://doi.org/10.1038/nature24668

    Article  Google Scholar 

  61. Pereira P, Francos M, Brevik EC, Ubeda X, Bogunovic I (2018) Post-fire soil management. Curr Opin Environ Sci Health 5:26–32

    Google Scholar 

  62. Porder S, Hilley GE (2011) Linking chronosequences with the rest of the world: predicting soil phosphorus content in denuding landscapes. Biogeochemistry 102(1–3):153–166

    Google Scholar 

  63. Porta J, López-Acevedo M, Poch RM (2010) Introducción a la edafología: uso y protección de suelos. 2ª Edición. S.A. Mundi-Prensa Libros, Madrid, España, p 507. ISBN: 9788484764052

  64. Przepióra P, Król G, Fraczek M, Kalicki T, Klusakiewic E (2017) Location and interpretation of post-forest-fire sediments—case studies. Folia Geogr Phys 16:43–49

    Google Scholar 

  65. Sánchez-García C, Schulte L, Carvalho F, Peña JC (2019) A 500-year flood history of the arid environments of southeastern Spain. The case of the Almanzora River. Glob Planet Chang 181:102987

    Google Scholar 

  66. Santín C, Doerr S (2016) Fire effects on soils: the human dimension. Philos T R Soc b 371:20150171. https://doi.org/10.1098/rstb.2015.0171

    Article  Google Scholar 

  67. Sariyildiz T, Anderson JM, Kucuk M (2005) Effects of tree species and topography on soil chemistry, litter quality, and decomposition in Northeast Turkey. Soil Biol Biochem 37(9):1695–1706

    Google Scholar 

  68. Shakesby RA (2011) Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth-Sci Rev 105:71–100

    Google Scholar 

  69. Shakesby RA, Doerr SH (2006) Wildfire as a hydrological and geomorphological agent. Earth Sci Rev 74:269–307. https://doi.org/10.1016/j.earscirev.2005.10.006

    Article  Google Scholar 

  70. Sidari M, Ronzello G, Vecchio G, Muscolo A (2008) Influence of slope aspects on soil chemical and biochemical properties in a Pinus laricio forest ecosystem of Aspromonte (Southern Italy). Eur J Soil Biol 44(4):364–372

    Google Scholar 

  71. Sikdar PK, Chakraborty S, Adhya E, Paul PK (2004) Land use/land cover changes and groundwater potential zoning in and around Raniganj coal mining area, Bardhaman District, West Bengal-a GIS and remote sensing approach. J Spat Hydrol 4(2)

  72. Smith HG, Dragovich D (2008) Post-fire hillslope erosion response in a sub-alpine environment, south-eastern Australia. Catena 73(3):274–285

  73. Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. USDA-Natural resources conservation service, Washington, DC

    Google Scholar 

  74. Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions. John Wiley & Sons

    Google Scholar 

  75. Úbeda X, Sala M (1995) Guia pràctica per a l’estudi dels sols. Publicaciones Universitat de Barcelona, p 36 ( ISBN:84-475-1110-3)

  76. Van der Knijff JM, Jones RJA, Montanarella L (2000) Soil erosion risk: assessment in Europe

  77. Vitousek P, Chadwick O, Matson P, Allison S, Derry L, Kettley L, Luers A, Mecking E, Monastra V, Porder S (2003) Erosion and the rejuvenation of weathering-derived nutrient supply in an old tropical landscape. Ecosystems 6(8):762–772

    Google Scholar 

  78. Walker XJ, Baltzer JL, Cumming SG, Day NJ, Ebert C, Goetz S, Johnstone JF, Potter S, Rogers BM, Schuur EAG, Turetsky MR, Mack M (2019) Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572:520–523. https://doi.org/10.1038/s41586-019-1474-y

    Article  Google Scholar 

  79. Wang C, Wan S, Xing X, Zhang L, Han X (2006) Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biol Biochem 38(5):1101–1110

    Google Scholar 

  80. Wang Y, Li Y, Ye X, Xu Y, Wang X (2010) Profile storage of organic/inorganic carbon in soil: from forest to desert. Sci Total Environ 408(8):1925–1931

    Google Scholar 

  81. Wang B, Liu D, Yang J, Zhu Z, Darboux F, Jiao J, An S (2021) Effects of forest floor characteristics on soil labile carbon as varied by topography and vegetation type in the Chinese Loess Plateau. CATENA 196:104825

    Google Scholar 

  82. Weil R, Brady N (2017) The nature and properties of soils, 15th editon. Harlow, Pearson, p 1104 (ISBN: 978-0-13-325448-8)

    Google Scholar 

  83. Weintraub SR, Taylor PG, Porder S, Cleveland CC, Asner GP, Townsend AR (2015) Topographic controls on soil nitrogen availability in a lowland tropical forest. Ecology 96(6):1561–1574

    Google Scholar 

  84. Yulianto E, Hirakawa K, Tsuji H (2004) Charcoal and organic geochemical properties as an evidence of Holocene fires in tropical peatland, Central Kalimantan. Indones Trop 14(1):55–63

    Google Scholar 

  85. Zhang S, Zhang X, Huffman T, Liu X, Yang J (2011) Influence of topography and land management on soil nutrients variability in Northeast China. Nutr Cycl Agroecosyst 89(3):427–438

    Google Scholar 

  86. Zhang Y-Y, Wu W, Liu H (2019) Factors affecting variations of soil pH in different horizons in hilly regions. PLoS ONE 14(6):e0218563. https://doi.org/10.1371/journal.pone.0218563

    Article  Google Scholar 

  87. Zhong Q, Zhang S, Chen H, Li T, Zhang C, Xu X, Mao Z, Gong G, Deng O, Deng L, Zhang Y, Pu Y, Wang L (2019) The influence of climate, topography, parent material and vegetation on soil nitrogen fractions. CATENA 175:329–338. https://doi.org/10.1016/j.catena.2018.12.027

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the POSTFIRE_CARE Project [CGL2016-75178-C2-2-R (AEI/FEDER, UE)] financed by the Spanish Research Agency (AIE), by the EU’s Regional Development Fund (FEDER). We also wish to thank the Scientific and Technological Centers at the UB (CCiTUB) for providing analyses of some of the soil parameters and for undertaking the English revision of the manuscript. Thanks are also due to the financial support from FCT—Fundação para a Ciência e a Tecnologia, I.P. and CESAM (UIDB/50017/2020+UIDP/50017/2020), through national funds to AG-G.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcos Francos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Francos, M., Sánchez-García, C., Girona-García, A. et al. Influence of topography on sediment dynamics and soil chemical properties in a Mediterranean forest historically affected by wildfires: NE Iberian Peninsula. Environ Earth Sci 80, 436 (2021). https://doi.org/10.1007/s12665-021-09731-2

Download citation

Keywords

  • Soil chemical nutrients
  • Soil degradation
  • Soil formation
  • Fire recurrence
  • Sediment dynamics