Skip to main content

Advertisement

Log in

An approach to optimize bed sill design using multi-objective evolutionary algorithms

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Bed sills are a kind of grade control structure built at the same level as the river bed to protect it against erosion and to reduce the longitudinal slope of the channel. The aim of the present research was to determine the optimal dimensions of the structure by devising a new methodology to minimize cost and maximize stability, based on the optimization model of the multi-objective non-dominated sorting genetic algorithm (NSGA-II). This is achieved by calculating the width, height and distance between bed sills with these stability and cost objectives in mind. The NSGA-II algorithm is applied to solve the problem, and a set of Pareto points is obtained. The results are verified by considering the bed sills of the River Madarsoo in Iran and the River Plima in Italy, and comparing the results with those obtained using the Branch-and-Bound (B-and-B) algorithm. The results indicate that the cost and stability could respectively be improved by up to 18 and 20% in the River Madarsoo, and up to 18 and 26% in the River Plima, if the NSGA-II algorithm is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

Abbreviations

\({\text{cost}} ({\text{x}} )\) :

Cost function

\({\text{D}} ({\text{j}} )\) :

Crowding distance of jth individual

\({\text{D}}_{m}\) :

Mean grain size of sediments

\({\text{D}}_{x}\) :

Grain size such that \({\text{x}}\)% (in weight) of grains are smaller

\({\text{d}}_{i}\) :

Average depth at bankfull discharge in incised reach

\({\text{F}}_{{\text{bo}}}\) :

Blanch's zero bed factor

\({\text{FS}}\) :

Safety factor

\({\text{F}} (x_{i} )\) :

Individual of population

\({\text{f}}_{{bed_{{}} sill}}\) :

Bed sill weight

\({\text{f}}_{\text{k}} (x_{\text{i}} )\) :

Objective function

\({\text{f}}_{i}\) :

Value of the i \(i\) th objective function

\({\text{f}}_{i}^{max}\) :

Maximum or ideal value of ith objective function

\({\text{f}}_{i}^{min}\) :

The minimum or the worst values for the ith objective function

\({\text{f}}_{i}^{j + 1}\) :

Ith objective function value of j+1th individual

\({\text{f}}_{i}^{j - 1}\) :

Ith objective function value of j−1th individual

\({\text{f}}_{u}\) :

Water uplift

\((f_{us} )_{h}\) :

Soil horizontal component in bed sill upstream

\((f_{us} )_{v}\) :

Soil vertical component in bed sill upstream

\(f_{uw}\) :

Water horizontal load in bed sill upstream

\({\text{f}}_{w}\) :

Water vertical load

\({\text{f}}_{x}\) :

Objective function

\({\text{G}}_{s}\) :

Specific Gravity of Soil Solids

\(G_{s} - 1\) :

Relative submerged density of the sediment

\(g\) :

Acceleration due to gravity

\(H_{s}\) :

Critical specific flow energy

\({\text{h}}_{b}\) :

Bed sill height with respect to scour

\({\text{h}}_{w}\) :

Water depth at uniform flow conditions

\({\text{K}}_{a}\) :

Coefficient of active earth pressure

\({\text{L}}\) :

Longitudinal distance between bed sills

\({\text{L}}_{p}\) :

Length of the reach

\(m\) :

Number of objectives

\(m_{1}\) :

Ratio of cut cost to construction cost

\(m_{2}\) :

Ratio of fill cost to construction cost

\({\text{n}}\) :

Number of bed sills

\({\text{n}}_{b}\) :

Bed sill porosity

\({\text{n}}_{p}\) :

Soil porosity

\(n_{s}\) :

Manning's roughness coefficient

\({\text{p}}_{t}\) :

Parent population

\({\text{Q}}_{t}\) :

Offspring population

\(q_{f}\) :

Design flood discharge per unit river width

\({\text{q}}_{i}\) :

Bankfull discharge in incised reach per unit river width

\(SI\) :

Sorting index of bed particles

\({\text{s}}_{0}\) :

Initial bed slope

\({\text{s}}_{e}\) :

Equilibrium bed slope of river

\({\text{Stability}} (x)\) :

Stability function

\({\text{UPRC}}_{\text{b}}\) :

Cost per unit volume

\({\text{V}}_{i}\) :

Bed sill volume

\({\text{V}}^{\prime}_{i}\) :

Cut volume

\({\text{V}}^{\prime\prime}_{i}\) :

Fill volume

\({\text{W}}_{\text{b}}\) :

Bed sill width

\({\text{W}}_{i}\) :

Weight or importance of the ith objective

\({\text{W}}_{r}\) :

River width

\({\text{y}}_{d}\) :

Bed sill height

\({\text{y}}_{g}\) :

General scour depth

\({\text{y}}_{s}\) :

Local scour depth with respect to the crest elevation

\({\text{y}}_{t}\) :

Drop to be removed from reach

\({\text{Z}}\) :

Scour coefficient

\(\gamma_{s}\) :

Soil unit weight

\(\gamma_{satb}\) :

Bed sill saturated unit weight

\(\gamma_{sub}\) :

Soil submerged unit weight

\(\gamma_{w}\) :

Water unit weight

\(\theta_{c}\) :

Critical shields' mobility parameter

\(\Sigma {\text{f}}_{\text{h}}\) :

Resultant horizontal force

\(\Sigma {\text{f}}_{\text{v}}\) :

Resultant vertical force

\(\Sigma {\text{m}}_{o}\) :

Sum of the overturning moments

\(\Sigma {\text{m}}_{r}\) :

Sum of the stabilizing moments

\(\varphi\) :

Soil angle of friction

References

  • Afshar A, Rasekh A, Afshar MH (2009) Risk-based optimization of large flood-diversion systems using genetic algorithms. J Eng Optim 41(3):259–273

    Article  Google Scholar 

  • Flood Control District of Maricopa C (2013) Drainage design manual for Maricopa County, Arizona [Phoenix: Ariz.]

  • Azamathulla HM (2012) Gene expression programming for prediction of scour depth downstream of sills. J Hydrol 460:156–159

    Article  Google Scholar 

  • Bai T, Wu L, Chang JX, Huang Q (2015) Multi-objective optimal operation model of cascade reservoirs and its application on water and sediment regulation. J Water Resour Manag 29(8):2751–2770

    Article  Google Scholar 

  • Biedenharn DS, Hubbard LC (2001) Design considerations for siting grade control structures, Vicksburg, Miss: U.S. Army Engineer Research and Development Center

  • Bunte K, Abt SR, Swingle KW, Cenderelli DA, Schneider JM (2013) Critical shields values in coarse-bedded steep streams. J Water Resour Res 49(11):7427–7447

    Article  Google Scholar 

  • Cai W, Zhang L, Zhu X, Zhang A, Yin J, Wang H (2013) Optimized reservoir operation to balance human and environmental requirements: a case study for the three Gorges and Gezhouba dams, Yangtze river basin, China. J Ecol Inform 18:40–48

    Article  Google Scholar 

  • Carriaga CC, Mays LW (1999) Optimization approach to stable channel system design. In: Proceedings of 29th Annual Int. Water Resources Planning and Management Conference, June 6–9, Tempe, Arizona, United States

  • Chang LC, Chang FJ (2009) Multi-objective evolutionary algorithm for operating parallel reservoir system. J Hydrol 377(1–2):12–20

    Article  Google Scholar 

  • Charman J, Kostov L, Minetti L, Stoutesdijk J, Tricoli D (2001) Small dams and weirs in earth and gabion materials. Food and Agriculture Organization of the United Nations, Land and Water Development Division

  • Chen L (2003) Real coded genetic algorithm optimization of long term reservoir operation. J Am Water Resour Assoc 39(5):1157–1165

    Article  Google Scholar 

  • Chinnarasri C, Kositgittiwong D (2008) Laboratory study of maximum scour depth downstream of sills. J ICE-Water Manag 161(5):267–276

    Google Scholar 

  • Coello Coello CA, Lamont GB, Van Veldhuisen DA (2007) Evolutionary algorithms for solving multi-objective problems. Springer, New York

    Google Scholar 

  • Dagostino V, Ferro V (2004) Scour on alluvial bed downstream of grade-control structures. J Hydraul Eng. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:1(24)

    Article  Google Scholar 

  • Dai L, Zhang P, Wang Y, Jiang D, Dai H, Mao J, Wang M (2017) Multi-objective optimization of cascade reservoirs using NSGA-II: a case study of the three Gorges-Gezhouba cascade reservoirs in the middle Yangtze river, China. J Hum Ecol Risk Assess 23(4):814–835

    Article  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-objective genetic algorithm: NSGA-II. J IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Abrah Gostar Consulting Engineers (2005) Reports of Madarsoo river Bed sill. Tehran, Iran

  • Garg NK, Bhagat SK, Asthana BN (2002) Optimal barrage design based on subsurface flow considerations. J Irrig Drain Eng. https://doi.org/10.1061/(ASCE)0733-9437(2002)128:4(253),253-263

    Article  Google Scholar 

  • Gaudio R, Marion A, Bovolin V (2000) Morphological effects of bed sills in degrading rivers. J Hydraul Res 38(2):89–96

    Article  Google Scholar 

  • Guven A, Gunel M (2008) Prediction of scour downstream of grade-control structures using neural networks. J Hydraul Eng. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:11(1656),1656-1660

    Article  Google Scholar 

  • Haddad OB, Mirmomeni M, Marino MA (2010) Optimal design of stepped spillways using the HBMO algorithm. J Civ Eng Environ Syst 27(1):81–94

    Article  Google Scholar 

  • Hajiabadi R, Zarghami M (2014) Multi-objective reservoir operation with sediment flushing; case study of Sefidrud reservoir. J Water Resour Manag 28(15):5357–5376

    Article  Google Scholar 

  • Hamidifar H, Omid MH, Nasrabadi M (2017b) Reduction of scour using a combination of riprap and bed sill. J ICE-Water Manag 171:1–7

    Google Scholar 

  • Hamidifar H, Nasrabadi M, Omid MH (2017a) Using a bed sill as a scour countermeasure downstream of an apron. J Ain Shams Eng (in press)

  • Harsanyi JC, Selten R (1972) A generalized Nash solution for two-person bargaining games with incomplete information. J Manag Sci 18(5-part-2):80–106

    Google Scholar 

  • Holland JH (2010) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, Cambridge, Mass. [u.a.]. MIT Press

  • Jain V, Sachdeva G, Kachhwaha SS, Patel B (2016) Thermo-economic and environmental analyses based multi-objective optimization of vapor compression–absorption cascaded refrigeration system using NSGA-II technique. J Energy Convers Manag 113:230–242

    Article  Google Scholar 

  • Krzemień K (1999) Structure and dynamics of the high-mountain channel of river Plima in the Ortler-Cevedale Massif (South Tirol): nas

  • Lenzi MA (2002) Stream bed stabilization using boulder check dams that mimic step-pool morphology features in Northern Italy. Geomorphology 45(3–4):243–260

    Article  Google Scholar 

  • Lenzi MA, Marion A, Comiti F, Gaudio R (2002) Local scouring in low and high gradient streams at bed sills. J Hydraul Rese 40(6):731–739

    Article  Google Scholar 

  • Lenzi MA, Marion A, Comiti F (2003) Interference processes on scouring at bed sills. J Earth Surf Process Landf 28(1):99–110

    Article  Google Scholar 

  • Lenzi M, Comiti F, Marion A (2004) Local scouring at bed sills in a mountain river: Plima river, Italian alps. J Hydraul Eng. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:3(267),267-269

    Article  Google Scholar 

  • Marion A, Lenzi MA, Comiti F (2004) Effect of sill spacing and sediment size grading on scouring at grade-control structures. J Earth Surf Processes Landf 29(8):983–993

    Article  Google Scholar 

  • Ostadi F, Majdzadeh Tabatabai MR, Alimohammadi S (2015) Optimization modeling of spur-dikes dimensions by considering its role on river morphological stabilization. J Hydraul 9(4):55–72 ((in Persian))

    Google Scholar 

  • Panahi A, Alijani B, Mohammadi H (2010) The effect of the land use/cover changes on the floods of the Madarsu Basin of Northeastern Iran. J Water Resour Protect 2(04):373–379

    Article  Google Scholar 

  • Pemberton EL, Lara JM (1984) Computing degradation and local scour: technical guideline, Denver, Colo.: Bureau of Reclamation

  • Raquel S, Ferenc S, Emery C Jr, Abraham R (2007) Application of game theory for a groundwater conflict in Mexico. J Environ Manag 84(4):560–571

    Article  Google Scholar 

  • Razi S, Salmasi F, Dalir AH, Farsadizaeh D (2011) Application of bed sill to control scouring around cylindrical bridge piers. J Civil Eng Urban 2(3):115–121

    Google Scholar 

  • Saleh SHA, Tanyimboh TT (2013) Coupled topology and pipe size optimization of water distribution systems. J Water Resour Manag 27(14):4795–4814

    Article  Google Scholar 

  • Shafai-Bejestan M, Nabavi SMR, Dey S (2016) Scour downstream of grade control structures under the influence of upward seepage. J Acta Geophys 64(3):694–710

    Article  Google Scholar 

  • Sharifi F, Haddad OB, Afshar A (2005) GA in least cost design of stepped spillways. J WSEAS Trans Inf Sci Appl 2(5):637–643

    Google Scholar 

  • Singh RM (2011) Design of barrages with genetic algorithm based embedded simulation optimization approach. J Water Resour Manag 25(2):409–429

    Article  Google Scholar 

  • Srinivas N, Deb K (1994) Muilti-objective optimization using nondominated sorting in genetic algorithms. J Evol Comput 2(3):221–248

    Article  Google Scholar 

  • Thomas J, Culler M, Dermisis D, Pierce CL, Papanicolaou A, Stewart TW, Larson C (2013) Effects of grade control structures on fish passage, biological assemblages and hydraulic environments in western Iowa streams: a multidisciplinary review. J River Res Appl 29(3):389–398

    Article  Google Scholar 

  • Tregnaghi M (2008) Local scouring at bed sills under steady and unsteady conditions, Padova: Università degli studi di, Padova Dipartimento di ingegneria idraulica, marittima ambientale e geotecnica

  • Tregnaghi M, Marion A, Coleman S, Tait S (2010) Effect of flood recession on scouring at bed sills. J Hydraul Eng. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000164

    Article  Google Scholar 

  • Zadeh AAT, Kashefipour SM (2008) Modeling local scour on loose bed downstream of grade-control structures using artificial neural network. J Appl Sci 8(11):2067–2074

    Article  Google Scholar 

  • Zahiri A, Ghorbani K (2013) Prediction of maximum scour depth downstream of bed sills using support vector machines. J Water Soil Conservat 20(6):107–125 (in Persian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Majdzadeh Tabatabai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatabai, M.R.M., Adineh, S., Alimohammadi, S. et al. An approach to optimize bed sill design using multi-objective evolutionary algorithms. Environ Earth Sci 80, 480 (2021). https://doi.org/10.1007/s12665-021-09688-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09688-2

Keywords

Navigation