Skip to main content
Log in

Radioactivity, radiogenic heat production and environmental radiation risk of the Basement Complex rocks of Akungba-Akoko, southwestern Nigeria: insights from in situ gamma-ray spectrometry

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Basement Complex rocks of Akungba-Akoko, southwestern Nigeria, typically migmatites (M), biotite gneisses (BGN), granite gneisses (GGN), charnockites (Ch), biotite granites (BG) and pegmatites (P), were assessed using ground gamma-ray spectrometry (GRS). This study aimed at determining rocks’ radionuclides concentration, alterations, radionuclides mobilization, radiogenic heat production (RHP) rate (first report for the area) and environmental radiation risk to humans. The results of this study were integrated with previous data on the petrography and geochemistry of these rocks, for detailed interpretation. The results of average elemental and activity concentrations for Akungba-Akoko rocks, were 2.66%, 3.16 ppm and 13.98 ppm, and 831.35, 39.01 and 56.77 \(Bq{kg}^{-1}\) for 40K, 238U and 232Th, respectively; with increasing rock order of Ch < M < GGN < BGN < P < BG. High radionuclides concentration in the rocks, with exception of charnockites, were determined by high amount of K-feldspar, plagioclase, biotite and accessory minerals—zircon and monazites. On the other hand, the low radionuclides concentration in the rocks, especially in Ch and M, were aided by the variability of the naturally occurring radioactive elements (NORMs) caused by alterations and mobilization during metamorphism and crystallization processes as suggested by radioelements composite, K/eTh ratio and F-parameter of Efimov analyses. RHP average of 2.03 \(\mu W{m}^{-3}\) above the crustal average range of 0.8–1.2 \(\mu W{m}^{-3}\) may have significantly contributed to the heat flux in the studied area; however, the RHP of charnockites are lower than the crustal range. The absorbed dose rate average of 87.98 \(nGy{ h}^{-1}\) was within the permissible range, and other estimated radiological parameters, namely annual effective doses, hazard indices, gamma activity and activity utilization index, were all far below the permissible limit of 1 \(mSv {y}^{-1}\) for these rocks. However, the annual gonad dose equivalent (618.874 \(\mu Sv{ y}^{-1}\)) and excess life cancer risk (1.511 × 10− 3) were above their permissible limits. Due to the high gamma radiations from the pegmatitic and biotite-rich rocks in the studied area, their high usage should be reduced. Hence, periodic monitoring of the study area is advised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abd El Nabi SH (2012) An analysis of airborne gamma ray spectrometric data of Gabal umm Naggat granitic pluton, Central Eastern Desert, Egypt. JAKU: Earth Sci 23(2):19–42. https://doi.org/10.4197/Ear.23-2.2

    Article  Google Scholar 

  • Abd El-Naby HH, Saleh GM (2003) Radioelement distributions in the Proterozoic granites and associated pegmatites of Gabal El Fereyid area, Southeastern Desert, Egypt. Appl Rad Isotopes 59:289–299. https://doi.org/10.1016/j.apradiso.2003.07.002

    Article  Google Scholar 

  • Adabanija MA, Anie ON, Oladunjoye MA (2020) Radioactivity and gamma ray spectrometry of basement rocks in Okene area, southwestern Nigeria. NRIAG J Astron Geophys 9(1):71–78. https://doi.org/10.1080/20909977.2020.1711695

    Article  Google Scholar 

  • Adagunodo TA, Bayowa OG, Usikalu MR, Ojoawo AI (2019) Radiogenic heat production in the coastal plain sands of Ipokia, Dahomey Basin, Nigeria. MethodsX 6:1608–1616. https://doi.org/10.1016/j.mex.2019.07.006

    Article  Google Scholar 

  • Ademila O, Akingboye AS, Ojamomi AI (2018) Radiometric survey in geological mapping of parts of Basement Complex area of Nigeria. Vietnam J Earth Sci 40(3):288–298. https://doi.org/10.15625/0866-7187/40/3/12619

    Article  Google Scholar 

  • Ademola AK, Hammed OS, Adejumobi CA (2008) Radioactivity and dose assessment of marble samples from Igbeti mines, Nigeria. Rad Protect Dosimetry 132(1):94–97. https://doi.org/10.1093/rpd/ncn279

    Article  Google Scholar 

  • Ademola AK, Bello AK, Adejumobi AC (2014) Determination of natural radioactivity and hazard in soil samples in and around gold mining area in Itagunmodi, south-western, Nigeria. J Rad Res Appl Sci 7:249–255. https://doi.org/10.1016/j.jrras.2014.06.001

    Article  Google Scholar 

  • Ajayi IR, Ajayi OS (1999) Estimation of absorbed dose rate and collective dose equivalent due to gamma radiation from selected radionuclides in soil in Ondo and Ekiti States, south-western Nigeria. Rad Protect Dostimetry 86(3):221–224

    Article  Google Scholar 

  • Ajayi IR, Adegbuyi O, Afolabi OM, Oniya EO (2006) Terrestrial gamma dose rates in Akoko, Southwestern Nigeria. Sci Res Annals 2(1):53–57

    Google Scholar 

  • Ajayi OS, Dike CG, Balogun KO (2018) Elemental and radioactivity analysis of rocks and soils of some selected sites in southwestern Nigeria. Environ Forensic 19(2):87–98

    Article  Google Scholar 

  • Akingboye AS, Ademila O (2019) In situ natural radioactivity and radiological hazard assessments of granite gneiss outcrops in parts of the Southwestern Basement Complex of Nigeria. J Nat Hazards and Environ 5(2):1–11. https://doi.org/10.21324/dacd.475998

    Article  Google Scholar 

  • Akkurt I, Oruncak B, Gunoglu K (2010) Radioactivity and dose rates in commercially-used marble from Afyonkarahisar-Turkey. Int J Phys Sci 5(2):170–173

    Google Scholar 

  • Akpan AE, Ebong ED, Ekwok SE, Eyo JO (2020) Assessment of radionuclide distribution and associated radiological hazards for soils and beach sediments of Akwa Ibom Coastline, southern Nigeria. Arab J Geosci 13(15):12p. https://doi.org/10.1007/s12517-020-05727-7

    Article  Google Scholar 

  • Al-Trabulsy HA, Khater AEM, Habbani FI (2011) Radioactivity levels and radiological hazard indices at the Saudi coastline of the Gulf of Aqaba. Rad Phy Chem 80(3):343–348. https://doi.org/10.1016/j.radphyschem.2010.09.002

    Article  Google Scholar 

  • Asfahani J, Aissa M, Al-Hent R (2007) Uranium migration in a sedimentological phosphatic environment in northern Palmyrides, Al-Awabed area, Syria. Appl Rad Isotopes 65:1078–1086. https://doi.org/10.1016/j.apradiso.2007.04.019

    Article  Google Scholar 

  • Avwiri GO, Nte FU, Olanrewaju AI (2011) Determination of radionuclide concentration of landfill at Eliozu, Port Harcourt, Rivers State. Scientia Africana, 10(1).

  • Bártová H, Kuceˇra J, Musílek L, Trojeck T, Gregorová E (2017) Determination of U, Th and K, in bricks by gamma-ray spectrometry, X-ray fluorescence analysis and neutron activation analysis. Radiat Phys Chem 140:161–166

    Article  Google Scholar 

  • Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths; Implications for the chemistry of crustal melts. J Petrol 37:521–552

    Article  Google Scholar 

  • Bea F (2012) The sources of energy for crustal melting and the geochemistry of heat-producing elements. Lithos 153:278–291. https://doi.org/10.1016/j.lithos.2012.01.017

    Article  Google Scholar 

  • Beretka J, Mathew PJ (1985) Natural radioactivity of Australia building materials, industrial wastes and by-products. Health Phy 48:87–95. https://doi.org/10.1097/00004032-198501000-00007

    Article  Google Scholar 

  • Braun JJ, Pagel M, Herbillon A, Rosin C (1993) Mobilization and redistribution of REEs and thorium in a syenitic lateritic profile: a mass balance study. Geochim Cosmochim Acta 57:4419–4434. https://doi.org/10.1016/0016-7037(93)90492-F

    Article  Google Scholar 

  • Braun JJ, Viers J, Dupré B, Polve M, Ndam J, Muller J-P (1998) Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: the implication for the present dynamics of the soil covers of the humid tropical regions. Geochim Cosmochim Acta 62:273–299. https://doi.org/10.1016/S0016-7037(97)00344-X

    Article  Google Scholar 

  • Chandrasekaran A, Ravisankar R, Senthilkumar G, Thillaivelavan K, Dhinakaran B, Vijayagopal P, Bramha SN, Venkatraman B (2014) Spatial distribution and lifetime cancer risk due to gamma radioactivity in Yelagiri Hills, Tamilnadu, India. Egy J Basic Appl Sci 1:38–48. https://doi.org/10.1016/j.ejbas.2014.02.001

    Article  Google Scholar 

  • Chen J, Rahaman NM, Atiya IA (2010) Radon exhalation from building materials for decorative use. J Environ Radioact 101:317–322

    Article  Google Scholar 

  • Cinar H, Altundas S, Çelik N, Maden N (2017) In situ gamma ray measurements for deciphering of radioactivity level in the Sarihan pluton area of northeastern Turkey. Arab J Geosci. https://doi.org/10.1007/s12517-017-3225-4

    Article  Google Scholar 

  • Cinelli G, Brattich E, Coletti C, De Ingeniis V, Mazzoli C, Mostacci D, Sassi R, Tositti L (2020) Terrestrial gamma dose rate mapping (Euganean Hills, Italy): comparison between field measurements and HPGe gamma spectrometric data. Radia Effects Defects Solids 175:54–67. https://doi.org/10.1080/10420150.2020.1718131

    Article  Google Scholar 

  • Clauser C (2020) Radiogenic heat production of rocks. In: Gupta HK (ed), Encyclopedia of solid earth geophysics. Encycl Earth Sci Series doi:https://doi.org/10.1007/978-3-030-10475-7_74-1

  • Coletti C, Brattich E, Cinelli G, Cultrone G, Maritan L, Mazzoli C, Mostacci D, Tositti L, Sassi R (2020) Radionuclide concentration and radon exhalation in new mix design of bricks produced reusing NORM by-products: The influence of mineralogy and texture. Constr Build Mat 260:119820. https://www.sciencedirect.com/science/article/pii/S0950061820318250

  • Constable JL, Hubbard FH (1981) U, Th and K distribution in a differentiated charnockite-granite intrusion and associated rocks from SW Sweden. Miner Mag 44:409–415

    Article  Google Scholar 

  • Dickson BL, Scott KM (1997) Interpretation of aerial gamma-ray surveys—adding the geochemical factors. Airborne magnetic and radiometric surveys. J Austra Geol Geophys 17(2):187–200

    Google Scholar 

  • Efimov AV (1978) Multiplikativnyj pokazatel dlja vydelenija endogennych rud po aerogammaspektrometriceskim dannym. In: Metody Rudnoj Geofiziki, edited by Naucno-proizvodstven Oje objedinenie "Geofizika" Leningrad.

  • Eggeling L, Genter A, Kölbel T, Münch W (2013) Impact of natural radionuclides on geothermal exploitation in the Upper Rhine Graben. Geothermics 47:80–88. https://doi.org/10.1016/j.geothermics.2013.03.002

    Article  Google Scholar 

  • El Qassas RAY, Salaheldin M, Assran SAM, Fattah ThA, Rashed MA (2020) Airborne gamma-ray spectrometric data interpretation on Wadi Queih and Wadi Safaga area, Central Eastern Desert. Egypt NRIAG J Astron Geophys 9(1):155–167. https://doi.org/10.1080/20909977.2020.1728893

    Article  Google Scholar 

  • Eleraki ME, Ghieth B, Rahman NA, Zamzam S (2017) Hydrothermal zones detection using airborne magnetic and gamma ray spectrometric data of mafic/ultramafic rocks at gabal el-rubshi area, central eastern desert (CED) Egypt. Adv Nat Appl Sci 11(9):182–196

    Google Scholar 

  • El-Gamal A, Nasr S, El-Taher A (2007) Study of the spatial distribution of natural radioactivity in Upper Egypt Nile River sediments. Rad Meas 42:457–465

    Article  Google Scholar 

  • Elkhateeb SO, Abdellatif MAG (2018) Delineation of potential gold mineralisation zones in a part of Central Eastern Desert, Egypt using airborne magnetic and radiometric data. NRIAG J Astron Geophys 7(2):361–376

    Article  Google Scholar 

  • El-Sadek MA (2009) Radiospectrometric and magnetic signatures of a gold mine in Egypt. J Appl Geophys 67(1):34–43. https://doi.org/10.1016/j.jappgeo.2008.08.012

    Article  Google Scholar 

  • Erbek E, Dolmaz MN (2018) In situ measurements of radionuclide concentrations in south of Mulgacity, Turkey. Environ Earth Sci 77:366–377. https://doi.org/10.1007/s12665-018-7562-8

    Article  Google Scholar 

  • European Commission EC (1999) Radiological Protection Principles concerning the Natural Radioactivity of Building Materials. Radiat Protect 112.

  • Faweya EB, Oniya EO, Ojo FO (2013) Assessment of radiological parameters and heavy-metal contents of sediment samples from Lower Niger River, Nigeria. Arab J Sci Engin 38:1903–1908. https://doi.org/10.1007/s13369-013-0549-6

    Article  Google Scholar 

  • Gnojek I, Prichystal A (1985) A new zinc mineralisation detected by airborne gamma-ray spectrometry in northern Moravia, Czechoslovakia. Geoexploration 23:491–502

    Article  Google Scholar 

  • Goodenough KM, Lusty PAJ, Roberts NMW, Key RM, Garba A (2014) Post-collisional Pan-African granitoids and rare metal pegmatites in western Nigeria: age, petrogenesis, and the ‘pegmatite conundrum.’ Lithos 200:22–34. https://doi.org/10.1016/j.lithos.2014.04.006

    Article  Google Scholar 

  • Hasterok D, Webb J (2017) On the radiogenic heat production of igneous rocks. Geosci Front 8:919–940

    Article  Google Scholar 

  • Hoover DB, Heran WD, Hill PL (1992) The geophysical expression of selected mineral deposit models. U.S. Geological Survey Open-File report 92–557.

  • IAEA (1991) Airborne gamma ray spectrometer surveying. International Atomic Energy Agency. Technical Report Series, No. 323

  • IAEA (2003) Radiation protection and the management of radioactive waste in the oil and gas industry. International Atomic Energy Agency, Vienna, p 173

    Google Scholar 

  • ICRP (1977) Recommendations of the International Commission on Radiological Protection (ICRP). Pergamon Press, New York, p 87

    Google Scholar 

  • ICRP (1990) Recommendations of the International Commission on Radiological Protection (ICRP). Pergamon Press, New York, p 60 (ICRP Pub)

    Google Scholar 

  • Innocent JA, Onimisi MY, Jonah SA (2013) Evaluation of naturally occurring radionuclide materials in soil samples collected from some mining sites in Zamfara state. Nigeria. British J Appl Sci Technol 3(4):684–692

    Article  Google Scholar 

  • Kalyoncuoglu UY (2015) In situ gamma source radioactivity measurement in Isparta plain, Turkey. Environ Earth Sci 73:3159–3175. https://doi.org/10.1007/s12665-014-3610-1

    Article  Google Scholar 

  • Kathren RL (1998) NORM sources and their origins. Appl Rad Isotopes 49(3):149–168. https://doi.org/10.1016/S0969-8043(97)00237-6

    Article  Google Scholar 

  • Killeen PG, Heier KS (1974) Variation in the Levang Granite-Gneiss, Bamble Region South Norway. Contrib Mineral Petrol 48:171–177

    Article  Google Scholar 

  • Killeen PG, Heier KS (1975) A uranium and thorium enriched province of the Fennoscandian shield in southern Norway. Geochimica et Cosmochlmica Acta 39:1515–1524

    Article  Google Scholar 

  • Kroner A, Ekwueme BN, Pidgeon RT (2001) The oldest rocks in west Africa: SHRIMP zircon age for early archean migmatitic orthogneiss at kaduna, Northern Nigeria. The J Geol 109:399–406. https://doi.org/10.1086/319979

    Article  Google Scholar 

  • Maden N, Akaryali E (2015a) Gamma ray spectrometry for recognition of hydrothermal alteration zones related to a low sulfidation epithermal gold mineralisation (eastern Pontides, NE Türkiye). J Appl Geophys 122:74–85. https://doi.org/10.1016/j.jappgeo.2015.09.003

    Article  Google Scholar 

  • Maden N, Akaryali E (2015b) A review for genesis of continental arc magmas: U, Th, K and radiogenic heat production data from the Gümüşhane Pluton in the Eastern Pontides (NE Türkiye). Tectonophys 664:225–243. https://doi.org/10.1016/j.tecto.2015.09.023

    Article  Google Scholar 

  • Mamont-Ciesla K, Gwiazdowski B, Biernacka M, Zak A (1982) Radioactivity of building materials in Poland. In: Vohra G, Pillai KC, Sadavisan S (eds) Natural radiation environment. Halsted Press, New York, p 551

    Google Scholar 

  • Mareschal JC, Jaupart C, Gariépy C, Cheng LZ, Guillou-Frottier L, Bienfait G, Lapointe R (2000) Heat flow and deep thermal structure near the southeastern edge of the Canadian Shield. Can J Earth Sci 37:399–414. https://doi.org/10.1139/e98-106

    Article  Google Scholar 

  • Narayana Y, Shetty PK, Siddappa K (2005) Enrichment of natural radionuclides in monazite areas of coastal Kerala. Int Congress Series 1276:333–334. https://doi.org/10.1016/j.ics.2004.11.163

    Article  Google Scholar 

  • Nisbet H, Migdisov AA, Williams-Jones AE, Xu H, van Hinsberg VJ, Roback R (2019) Challenging the thorium-immobility paradigm. Scientific Reports 9, 17035. https://www.nature.com/articles/s41598-019-53571-x

  • Ogunyele AC, Oluwajana OA, Ehinola IQ, Ameh BE, Salaudeen TA (2019) Petrochemistry and petrogenesis of the Precambrian Basement Complex rocks around Akungba-Akoko, southwestern Nigeria. Mater Geoenviron 66(3):173–184. https://doi.org/10.2478/rmzmag-2019-0036

    Article  Google Scholar 

  • Oxburg ER (1980) Heat flow and magma genesis. In: Hargraves RB (ed) Physics of magmatic processes. Princeton University Press, New Jersey, pp 161–199

    Chapter  Google Scholar 

  • Oyeyemi KD, Usikalu MR, Aizebeokhai AP, Achuka JA, Jonathan O (2017) Measurements of radioactivity levels in part of Ota Southwestern Nigeria: implications for radiological hazards indices and excess lifetime cancer-risks. IOP Conf Series J Phys 852:1–8. https://doi.org/10.1088/1742-6596/852/1/012042

    Article  Google Scholar 

  • Perry HKC, Jaupart C, Mareschal J, Bienfait G (2006) Crustal heat production in the Superior Province, Canadian Shield, and in North America inferred from heat flow data. J Geophys Res Solid Earth 111:1–20. https://doi.org/10.1029/2005JB003893

    Article  Google Scholar 

  • Portnov AM (1987) Specialization of rocks toward potassium and thorium in relation to mineralisation. Int Geol Rev 29:326–344

    Article  Google Scholar 

  • Rafique M, Rahman SU, Basharat M, Aziz W, Ahmad I, Lone KA, Ahmad K, Matiullah (2014) Evaluation of excess life time cancer risk from gamma dose rates in Jhelum valley. J Rad Res Appl Sci. https://doi.org/10.1016/j.jrras.2013.11.005

    Article  Google Scholar 

  • Rahaman MA (1989) Review of the Basement Geology of Southwestern Nigeria. In: Kogbe CA (ed) Geology of Nigeria. Rockview Nigeria Limited, Jos, pp 39–56

    Google Scholar 

  • Ramasamy V, Suresh G, Meenakshisundaram V, Gajendran V (2009) Evaluation of natural radionuclide content in river sediments and excess lifetime cancer risk due to gamma radioactivity. Res J Environ Earth Sci 1(1):6–10

    Google Scholar 

  • Ramasamy V, Suresh G, Meenakshisundaram V, Ponnusamy V (2011) Horizontal and vertical characterisation of radionuclides and minerals in river sediments. Appl Rad Isotopes 69(1):184–195. https://doi.org/10.1016/j.apradiso.2010.07.020

    Article  Google Scholar 

  • Ramola RC, Manjulata Y, Gusain GS (2014) Distribution of natural radionuclide along Main Central Thrust in Garhwal Himalaya. J Rad Res Appl Sci 7(4):614–619. https://doi.org/10.1016/j.jrras.2014.10.002

    Article  Google Scholar 

  • Rosianna I, Nugraha ED, Syaeful H, Putra S, Hosoda M, Akata N, Tokonami S (2020) Natural radioactivity of laterite and volcanic rock sample for radioactive mineral exploration in Mamuju, Indonesia. Geosci 10:376. https://doi.org/10.3390/geosciences10090376

    Article  Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Rybach L (1988) Determination of the heat production rate. In: Haenel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat-flow density determination. Kluwer Academic Publishers, Dordrecht, pp 125–142

    Google Scholar 

  • Sabra MEM, Abdeldayem AL, Youssef MAS, Masoud AA, Mansour SA (2019) Determination of the radiation dose rate and radiogenic heat production of North Gabal Abu Hibban area, central Eastern Desert Egypt. NRIAG J Astron Geophys 8(1):103–111. https://doi.org/10.1080/20909977.2019.1617556

    Article  Google Scholar 

  • Saqan SA, Kullab MK, Ismail AM (2001) Radionuclides in hot mineral spring waters in Jordan. J Environ Radio 52(1):99–107. https://doi.org/10.1016/S0265-931X(00)00096-5

    Article  Google Scholar 

  • Schmucker U (1969) Geophysical aspects of structure and composition of the Earth. In: Wedepohl KH (ed) Handbook of geochemistry (I). Springer-Verlag, Berlin, pp 134–226

    Chapter  Google Scholar 

  • Smithson SB, Decker ER (1974) A continental crustal model and its geothermal implications. Earth Planet Sci Lett 22(3):215–225

    Article  Google Scholar 

  • Stoulos S, Manolopoulou M, Papastefanou C (2003) Assessment of natural radiation exposure and radon exhalation from building materials in Greece. J Environ Radioact 69:225–240

    Article  Google Scholar 

  • Tan G, Li C, Li M (1991) Investigation of environment natural penetrating radiation level in Guangdong Province. Rad Protection 11:47–57 (in Chinese with English abstract)

    Google Scholar 

  • Taskin H, Karavus M, Ay P, Topuzoglu A, Hindiroglu S, Karahan G (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radio 100(1):49–53. https://doi.org/10.1016/j.jenvrad.2008.10.012

    Article  Google Scholar 

  • Tufail M, Nasim-Akhar Sabiha-Javied SA, Hamid T (2007) Natural radiation hazard in building bricks fabrication from soils of two districts of Pakistan. J Radio Protect 27:481–492. https://doi.org/10.1088/0952-4746/27/4/009

    Article  Google Scholar 

  • Tzortzis M, Tsertos H (2004) Determination of uranium, thorium and potassium elemental concentration in surface soils in Cyprus. J Environ Radio 77(3):325–338. https://doi.org/10.1016/j.jenvrad.2004.03.014

    Article  Google Scholar 

  • Tzortzis M, Tsertos H, Christofides C, Christodoulides G (2003) Gamma radiation measurement and dose rates in commercially-used natural tiling rocks (granites). J Environ Radio 70(1):223–235. https://doi.org/10.1016/S0265-931X(03)00106-1

    Article  Google Scholar 

  • UNSCEAR (1988) Sources, effects and risks of ionizing radiation. United Nations Scientific Committee on Effect of Atomic Radiation (UNSCEAR). United Nations, New York, p 647

    Google Scholar 

  • UNSCEAR (1993) Sources and effects of ionizing radiation. United Nations Scientific Committee on Effect of Atomic Radiation (UNSCEAR). United Nations, New York, p 920

    Google Scholar 

  • UNSCEAR (2000) Exposure from natural radiation source. United Nations Scientific Committee on Effect of Atomic Radiation (UNSCEAR), Report to general assembly. Annex B. United Nations, New York, p 76

    Google Scholar 

  • Uyanık NA, Uyanık O, Gür F, Aydın İ (2013) Natural radioactivity of bricks and brick material in the Salihli-Turgutlu area of Turkey. Environ Earth Sci 68(2):499–506. https://doi.org/10.1007/s12665-012-1754-4

    Article  Google Scholar 

  • Wang Q, Song J, Li X, Yuan H, Li N, Cao L (2016) Environmental evolution records reflected by radionuclides in the sediment of coastal wetlands: a case study in the Yellow River Estuary wetland. J Environ Radioact 162–163:87–96

    Article  Google Scholar 

  • Woakes M, Rahaman MA, Ajibade AC (1987) Some Metallogenetic Features of the Nigerian Basement. J Afri Earth Sci 6(5):655–664. https://doi.org/10.1016/0899-5362(87)90004-2

    Article  Google Scholar 

  • Wollenberg HA, Smith AR (1987) Radiogenic heat production of crustal rocks: an assessment based on geochemical data. Geophys Res Lett 14(3):295–298

    Article  Google Scholar 

  • Xinwei L, Lingqing W, Xiaodan J (2006) Radiometric analysis of Chinese commercial granites. J Radioanalytical Nuclear Chem 267(3):669–673. https://doi.org/10.1007/s10967-006-0101-1

    Article  Google Scholar 

  • Youssef MAS (2016) Estimating and interpretation of radioactive heat production using airborne gammaray survey data of Gabal Arrubushi area, Central Eastern Desert, Egypt. J Afr Earth Sci. 1:1. https://doi.org/10.1016/j.jafrearsci.2015.10.022

    Article  Google Scholar 

  • Youssef MAS, Elkhodary ST (2013) Utilization of airborne gamma ray spectrometric data for geological mapping, radioactive mineral exploration and environmental monitoring of southeastern Aswan city, South Eastern Desert, Egypt. Geophys J Int 195(3):1689–1700. https://doi.org/10.1093/gji/ggt375

    Article  Google Scholar 

  • Youssef MAS, Sarab MEM, Abdeldayem AL, Masoud AA, Mansour SA (2017) Uranium migration and favourable sites of potential radioelement concentrations in Gabal Umm Hammad area, Central Eastern Desert, Egypt. NRIAG J Astron Geophys 6:368–378

    Article  Google Scholar 

  • Zhu XK, O’Nions RK (1999) Monazite chemical composition: some implications for monazite geochronology. Contrib Mineral Petrol 137:351–363

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the Editor-in-Chief (James Wood LaMoreaux, PhD) and the two anonymous reviewers for their insightful comments, which contributed enormously to the quality of this work and increased its readability.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adedibu Sunny Akingboye.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akingboye, A.S., Ogunyele, A.C., Jimoh, A.T. et al. Radioactivity, radiogenic heat production and environmental radiation risk of the Basement Complex rocks of Akungba-Akoko, southwestern Nigeria: insights from in situ gamma-ray spectrometry. Environ Earth Sci 80, 228 (2021). https://doi.org/10.1007/s12665-021-09516-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09516-7

Keywords

Navigation