Skip to main content

Advertisement

Log in

Evaluating the performance of multisource digital elevation models using morphometric parameters and field survey data over the mountainous landscapes of northwest Himalaya, India

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In this study, seven morphometric characteristics were assessed from three freely available multisource DEMs and correlated with extensive field observations to assess the best-fit DEM over the mountainous landscapes of Kashmir Valley, northwest Himalaya, India. The morphometric parameters were assessed using 30 m ASTER GDEM v2 (ASTERDEM), SRTMDEM, and CartoDEM v3 R1 (CARTODEM) in the Ferozpora watershed of the Jhelum Basin, Kashmir Himalaya. Our findings indicated the closeness of mean bifurcation ratio (Rbm) values between manual digitization (Rbm = 4.12) and CARTODEM (Rbm = 4.07). The GPS-based values of drainage basin asymmetry, stream gradient index, basin relief, and longitudinal river profile also indicated a strong resemblance with CARTODEM-derived values. It is hence concluded that CARTODEM is the best-fit DEM representing the topographic and morphometric characteristics over the Kashmir region, however, the results from this analysis need to be tested and validated over larger geographic domains with contrasting lithological and topographic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrams M (2000) The advanced spaceborne thermal emission and reflection radiometer (ASTER): data products for the high spatial resolution imager on NASA’s Terra platform. Int J Remote Sens 21(5):847–859

    Article  Google Scholar 

  • Ahmad S, Bhat MI (2012) Tectonic geomorphology of the Rambiara basin, SW Kashmir valley reveals emergent out-of-sequence active fault system. Himalayan Geol 33(2):162–172

    Google Scholar 

  • Ahmad S, Bhat MI (2013) Investigating drainage response to the Balapur fault interaction on the northeastern PirPanjal flank, Kashmir valley, India. J Himalayan Ecol Sustain Dev 8:121–137

    Google Scholar 

  • Ahmad S, Bhat MI, Madden C, Bali BS (2014) Geomorphic analysis reveals active tectonic deformation on the eastern flank of the Pir Panjal Range, Kashmir Valley. India Arabian J Geosci 7(6):2225–2235

    Article  Google Scholar 

  • Ahmad S, Alam A, Ahmad B, Afzal A, Bhat MI, Bhat MS, Ahmad HF (2018) Tectono-geomorphic indices of the Erin basin, NE Kashmir valley, India. J Asian Earth Sci 151:16–30

    Article  Google Scholar 

  • Ahmed SA, Chandrashekarappa KN, Raj SK, NischithaV KG (2010) Evaluation of morphometric parameters derived from ASTER and SRTM DEM—a study on Bandihole sub-watershed basin in Karnataka. J Indian Soc Remote Sensing 38(2):227–238

    Article  Google Scholar 

  • Altaf F, Meraj G, Romshoo SA (2013) Morphometric analysis to infer hydrological behaviour of Lidder watershed, Western Himalaya, India. Geogr J. 178021. https://doi.org/10.1155/2013/178021

  • Antonić O, Hatic D, Pernar R (2001) DEM-based depth in sink as an environmental estimator. Ecol Model 138(1–3):247–254

    Article  Google Scholar 

  • Apollo M, Mostowska J, Maciuk K, Wengel Y, Jones TE, Cheer JM (2020) Peak-bagging and cartographic misrepresentations: a call to correction. Curr Issues Tourism 1–6. https://doi.org/10.1080/13683500.2020.1812541

  • Azor A, Keller EA, Yeats RS (2002) Geomorphic indicators of active fold growth: South Mountain-Oak Ridge anticline, Ventura basin, southern California. Geol Soc Am Bull 114(6):745–753

    Article  Google Scholar 

  • Bahrami S (2013) Tectonic controls on the morphometry of alluvial fans around Danehkhoshk anticline, Zagros. Iran Geomorphology 180:217–230

    Article  Google Scholar 

  • Bali R, Agarwal KK, Ali SN, Rastogi SK, Krishna K (2012) Drainage morphometry of Himalayan Glacio-fluvial basin, India: hydrologic and neotectonic implications. Environ Earth Sci 66(4):1163–1174

    Article  Google Scholar 

  • Baral SS, Das J, Saraf AK, Borgohain S, Singh G (2016) Comparison of Cartosat, ASTER and SRTM DEMs of different terrains. Asian J Geoinform 16(1):1–7

    Google Scholar 

  • Bhat MI (1982) Thermal and tectonic evolution of the Kashmir basin vis-a-vis petroleum prospects. Tectonophysics 88(1–2):117–132

    Article  Google Scholar 

  • Bhatt DK (1975) On the Quaternary geology of Kashmir Valley with special reference to stratigraphy and sedimentation. Geol Survey of India Misc Publ 24(1):188–203

    Google Scholar 

  • Bhatt DK (1989) Lithostratigraphy of Karewa Group, Kashmir Valley, India and a critical review of its fossil record. Geol Survey of India 122:1–85

    Google Scholar 

  • Bull WB, McFadden LD (1977) Tectonic geomorphology north and south of the Garlock Fault, California, in arid regions. A proceedings volume of the eighth annual geomorphology symposium. State University New York, Binghamton, pp 15–138

    Google Scholar 

  • Burbank DW, Anderson RS (2001) Tectonic geomorphology. Dep Geosci, The Pennsylvania State Univ 140(2):284–291

    Google Scholar 

  • Cox RT (1994) Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: an example from the Mississippi Embayment. Geol Soc Am Bull 106(5):571–581

    Article  Google Scholar 

  • Dar RA, Romshoo SA, Chandra R, Ahmad I (2014a) Tectono-geomorphic study of the Karewa Basin of Kashmir Valley. J Asian Earth Sci 92:143–156

    Article  Google Scholar 

  • Dar RA, Rashid I, Romshoo SA, Marazi A (2014b) Sustainability of winter tourism in a changing climate over Kashmir Himalaya. Environ Monit Assess 186(4):2549–2562

    Article  Google Scholar 

  • Das S, Pardeshi SD (2018) Comparative analysis of lineaments extracted from Cartosat, SRTM and ASTER DEM: a study based on four watersheds in Konkan region. India Spatial Inform Res 26(1):47–57

    Article  Google Scholar 

  • De Vente J, Poesen J, Govers G, Boix-Fayos C (2009) The implications of data selection for regional erosion and sediment yield modelling. Earth Surf Proc Land 34(15):1994–2007

    Article  Google Scholar 

  • Dehbozorgi M, Pourkermani M, Arian M, Matkan AA, Motamedi H, Hosseiniasl A (2010) Quantitative analysis of relative tectonic activity in the Sarvestan area, central Zagros. Iran Geomorphology 121(3–4):329–341

    Article  Google Scholar 

  • Dodov B, Foufoula-Georgiou E (2005) Fluvial processes and streamflow variability: interplay in the scale-frequency continuum and implications for scaling. Water Resour Res 41(5):W05005

    Article  Google Scholar 

  • El Hamdouni R, Irigaray C, Fernández T, Chacón J, Keller EA (2008) Assessment of relative active tectonics, southwest border of the Sierra Nevada (Southern Spain). Geomorphology 96(1–2):150–173

    Article  Google Scholar 

  • Evans GA, Ramachandran B, Zhang Z, Bailey GB, Cheng P (2008) An accuracy assessment of CartoSat-1 stereo image data-derived digital elevation models: a case study of the Drum Mountains, Utah. The Int Arch Photogrammetry, Remote Sensing and Spatial Inform Sci 37(B1):1161–1164

    Google Scholar 

  • Font M, Amorese D, Lagarde JL (2010) DEM and GIS analysis of the stream gradient index to evaluate effects of tectonics: the Normandy intraplate area (NW France). Geomorphology 119(3–4):172–180

    Article  Google Scholar 

  • Garbrecht J, Martz LW (1997) The assignment of drainage direction over flat surfaces in raster digital elevation models. J Hydrol 193(1–4):204–213

    Article  Google Scholar 

  • Gardner TW, Back W, Bullard TF, Hare PW, Kesel RH, Lowe DR, Menges CM, Mora SC, Pazzaglia FJ, Sasowsky ID, Troester JW (1987) Central America and the Caribbean. Geomorphic systems of North America: Boulder, Colorado, Geol Soc Am, Centennial Spec 2:343–402

    Google Scholar 

  • Gesch D, Oimoen M, Zhang Z, Meyer D, Danielson J (2012) Validation of the ASTER global digital elevation model version 2 over the conterminous United States. Int Arch Photogramm Remote Sensing Spatial Inform Sci 39:B4

    Google Scholar 

  • Godsey SE, Kirchner JW (2014) Dynamic, discontinuous stream networks: hydrologically driven variations in active drainage density, flowing channels and stream order. Hydrol Process 28(23):5791–5803

    Article  Google Scholar 

  • Hack JT (1973) Stream-profile analysis and stream-gradient index. J Res US Geol Survey 1(4):421–429

    Google Scholar 

  • Hare PW, Gardner TW (1985) Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. Tectonic Geomorphology 4:75–104

    Google Scholar 

  • Hayakawa YS, Oguchi T (2006) DEM-based identification of fluvial knickzones and its application to Japanese mountain rivers. Geomorphology 78(1–2):90–106

    Article  Google Scholar 

  • Hirano A, Welch R, Lang H (2003) Mapping from ASTER stereo image data: DEM validation and accuracy assessment. ISPRS J Photogrammetry and Remote Sensing 57(5–6):356–370

    Article  Google Scholar 

  • Hooshyar M, Singh A, Wang D, Foufoula-Georgiou E (2019) Climatic controls on landscape dissection and network structure in the absence of vegetation. Geophys Res Lett 46(6):3216–3224

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56(3):275–370

    Article  Google Scholar 

  • Howard AD (1990) Role of hypsometry and planform in basin hydrologic response. Hydrol Process 4(4):373–385

    Article  Google Scholar 

  • Istanbulluoglu E, Bras RL (2005) Vegetation‐modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography. J Geophys Res: Earth Surf 110(F2). https://doi.org/10.1029/2004JF000249

  • Jackson J, Dissen R, Berryman K (1998) Tilting of active folds and faults in the Manawatu region, New Zealand: evidence from surface drainage patterns. NZ J Geol Geophys 41(4):377–385

    Article  Google Scholar 

  • Jenson SK (1991) Applications of hydrologic information automatically extracted from digital elevation models. Hydrol Process 5(1):31–44

    Article  Google Scholar 

  • Keller EA, Pinter N (1996) Active tectonics, vol 19. Prentice Hall, Upper Saddle River, NJ, p 359

    Google Scholar 

  • Keller EA, Pinter N (2002) Active tectonics: earthquakes, uplift, and landscape, 2nd edn. Englewood Cliffs Prentice Hall, New Jersey, p 362

    Google Scholar 

  • Kervyn M, Ernst GGJ, Goossens R, Jacobs P (2008) Mapping volcano topography with remote sensing: ASTER vs. SRTM Int J of Remote Sensing 29(22):6515–6538

    Article  Google Scholar 

  • Kotlia BS (1985) Vertebrate fossils and palaeoenvironment of the Karewa Intermontane Basin, Kashmir, northwestern India. Curr Sci 54(24):1275–1277

    Google Scholar 

  • Krishnan S, Sajikumar N, Sumam KS (2016) DEM generation using Cartosat-I stereo data and its comparison with publically available DEM. Procedia Technology 24(7):295–302

    Article  Google Scholar 

  • Lawrence WR (1895) The valley of Kashmir. Chinar Publishing House, Srinagar

    Google Scholar 

  • Mackin JH (1948) Concept of the graded river. Geol Soc Am Bull 59(10/0016):7606

    Google Scholar 

  • Majeed U, Rashid I, Sattar A, Allen S, Stoffel M, Nüsser M, Schmidt S (2021) Recession of Gya Glacier and the 2014 glacial lake outburst flood in the Trans-Himalayan region of Ladakh. India Sci Total Environ 756:144008

    Article  Google Scholar 

  • Meraj G, Romshoo SA, Ayoub S, Altaf S (2018) Geoinformatics based approach for estimating the sediment yield of the mountainous watersheds in Kashmir Himalaya. India Geocarto Int 33(10):1114–1138

    Article  Google Scholar 

  • Middlemiss CS (1910) A revision of the Silurian-Trias sequence in Kashmir. Geological Survey of India Records 40:206–260

    Google Scholar 

  • Mir RR, Parvez IA, Gaur VK, Chandra R, Romshoo SA (2017) Crustal structure beneath the Kashmir Basin adjoining the western Himalayan syntaxis. Bull Seismol Soc Am 107(5):2443–2458

    Article  Google Scholar 

  • Mukherjee S, Joshi PK, Mukherjee S, Ghosh A, Garg RD, Mukhopadhyay A (2013) Evaluation of vertical accuracy of open source digital elevation model (DEM). Int J Appl Earth Obs Geoinform 21:205–217

    Google Scholar 

  • Orvis KH (2003) The highest mountain in the Caribbean: controversy and resolution via GPS. Carib J Sci 39(3):378–380

    Google Scholar 

  • Pandey AC, Dubey CS (2003) Terrain mapping and evaluation in Himalayas using remote sensing And GIS techniques—a case study from Tehri Dam and its environs. Int Arch Photogramm Remote Sensing Spatial Inform Sci 34(7/A):650–653

    Google Scholar 

  • Perez OJ, Hoyer M, Hernández J, Rodríguez C, Marques V, Sue N, Velandia J, Fernandes J, Deiros D (2006) GPS height measurement of Peak Bolivar. Venezuela Survey Review 38(302):697–702

    Article  Google Scholar 

  • Rabus B, Eineder M, Roth A, Bamler R (2003) The shuttle radar topography mission-a new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogramm Remote Sensing 57(4):241–262

    Article  Google Scholar 

  • Rakesh K, Lohani AK, Sanjay K, Chattered C, Nema RK (2000) GIS based morphometric analysis of Ajay river basin upto Srarath gauging site of South Bihar. J Appl Hydrol 14(4):45–54

    Google Scholar 

  • Ramírez-Herrera TM (1998) Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surface Process Landforms: J British Geomorphol Group 23(4):317–332

    Article  Google Scholar 

  • Ramsey LA, Walker RT, Jackson J (2008) Fold evolution and drainage development in the Zagros mountains of Fars province. SE Iran Basin Research 20(1):23–48

    Article  Google Scholar 

  • Rashid I, Romshoo SA, Hajam JA, Abdullah T (2016) A semi-automated approach for mapping geomorphology in mountainous terrain, Ferozpora watershed (Kashmir Himalaya). J Geol Soc India 88(2):206–212

    Article  Google Scholar 

  • Rashid I, Majeed U, Aneaus S, Pelto M (2020a) Linking the recent glacier retreat and depleting streamflow patterns with land system changes in Kashmir Himalaya. India Water 12(4):1168

    Article  Google Scholar 

  • Rashid I, Majeed U, Aneaus S, Cánovas JAB, Stoffel M, Najar NA, Bhat IA, Lotus S (2020b) Impacts of erratic snowfall on apple orchards in Kashmir Valley. India Sustainability 12(21):9206

    Article  Google Scholar 

  • Rawat KS, Singh SK, Singh MI, Garg BL (2019) Comparative evaluation of vertical accuracy of elevated points with ground control points from ASTERDEM and SRTMDEM with respect to CARTOSAT-1DEM. Remote Sensing Appl: Soc Environ 13:289–297

    Google Scholar 

  • Rockwell TK, Keller EA, Johnson DL (1985) Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California. In: Morisawa M (ed) Tectonic geomorphology. Proceedings of the 15th annual geomorphology symposium. Allen and Unwin Publishers, Boston, MA, pp 83–207

    Google Scholar 

  • Romshoo SA, Bhat SA, Rashid I (2012) Geoinformatics for assessing the morphometric control on hydrological response at watershed scale in the Upper Indus Basin. J Earth Syst Sci 121(3):659–686

    Article  Google Scholar 

  • Romshoo SA, Altaf S, Rashid I, Dar RA (2017) Climatic, geomorphic and anthropogenic drivers of the 2014 extreme flooding in the Jhelum basin of Kashmir, India. Geomatics, Natural Hazards and Risk 9(1):224–248

    Article  Google Scholar 

  • Sangireddy H, Carothers RA, Stark CP, Passalacqua P (2016) Controls of climate, topography, vegetation, and lithology on drainage density extracted from high resolution topography data. J Hydrol 537:271–282

    Article  Google Scholar 

  • Saran S, Sterk G, Peters P, Dadhwal VK (2010) Evaluation of digital elevation models for delineation of hydrological response units in a Himalayan watershed. Geocarto International 25(2):105–122

    Article  Google Scholar 

  • Schiffman C, Bali BS, Szeliga W, Bilham R (2013) Seismic slip deficit in the Kashmir Himalaya from GPS observations. Geophys Res Lett 40(21):5642–5645

    Article  Google Scholar 

  • Schneider A, Jost A, Coulon C, Silvestre M, Théry S, Ducharne A (2017) Global-scale river network extraction based on high-resolution topography and constrained by lithology, climate, slope, and observed drainage density. Geophys Res Lett 44(6):2773–2781

    Article  Google Scholar 

  • Schumm SA (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67(5):597–646

    Article  Google Scholar 

  • Sefercik U, Jacobsen K, Oruc M, Marangoz A (2007) Comparison of spot, SRTM and ASTER DEMs. Proc Int Soc Photogramm Remote Sensing 36(1):W51

    Google Scholar 

  • Shah AA (2015) Kashmir basin fault and its tectonic significance in NW Himalaya, Jammu and Kashmir. India International Journal of Earth Sciences 104(7):1901–1906

    Article  Google Scholar 

  • Sharma M, Paige GB, Miller SN (2010) DEM development from ground-based LiDAR data: a method to remove non-surface objects. Remote Sensing 2(11):2629–2642

    Article  Google Scholar 

  • Shreve RL (1966) Statistical law of stream numbers. J Geol 74(1):17–37

    Article  Google Scholar 

  • Singh OP (1980) Geomorphology of drainage basins in Palamau upland. Recent Trends and Concepts in Geography 1:229–247

    Google Scholar 

  • Singh MK, Gupta RD, Bhardwaj A, Ganju A (2016) Scenario-based validation of moderate resolution DEMs freely available for complex Himalayan terrain. Pure Appl Geophys 173(2):463–485

    Article  Google Scholar 

  • Snow RS, Slingerland RL (1987) Mathematical modeling of graded river profiles. J Geol 95(1):15–33

    Article  Google Scholar 

  • Strahler AN (1952) Dynamic basis of geomorphology. Geol Soc Am Bull 63(9):923–938

    Article  Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Eos, Trans Ame Geophys Union 38(6):913–920

    Article  Google Scholar 

  • Strahler AN (1964) Part II. Quantitative geomorphology of drainage basins and channel networks. Handbook of Applied Hydrology, McGraw-Hill, New York, pp 4–39

    Google Scholar 

  • Strahler AN (2002) Physical geography: science and systems of the human environment. Wiley, New York

    Google Scholar 

  • Sung Q, Chen Y (2004) Geomorphic evidence and kinematic model for quaternary transfer faulting of the Pakuashan anticline, Central Taiwan. J Asian Earth Sci 24(3):389–404

    Article  Google Scholar 

  • Tarboton DG, Shankar U (1998) The identification and mapping of flow networks from digital elevation data. Invited Presentation at AGU Fall Meeting, San Francisco, December 6 to 10.

  • Thakur VC, Jayangondaperumal R, Malik MA (2010) Redefining Medlicott–Wadia’s main boundary fault from Jhelum to Yamuna: an active fault strand of the main boundary thrust in northwest Himalaya. Tectonophysics 489(1–4):29–42

    Article  Google Scholar 

  • Thomas J, Joseph S, Thrivikramaji KP (2010) Morphometric aspects of a small tropical mountain river system, the southern Western Ghats. India Int J Digital Earth 3(2):135–156

    Article  Google Scholar 

  • Toutin T (2002) Three-dimensional topographic mapping with ASTER stereo data in rugged topography. IEEE Trans Geosci Remote Sens 40(10):2241–2247

    Article  Google Scholar 

  • Tucker GE, Bras RL (1998) Hillslope processes, drainage density, and landscape morphology. Water Resour Res 34(10):2751–2764

    Article  Google Scholar 

  • Tucker GE, Catani F, Rinaldo A, Bras RL (2001) Statistical analysis of drainage density from digital terrain data. Geomorphology 36(3–4):187–202

    Article  Google Scholar 

  • Turowski JM, Lague D, Hovius N (2009) Response of bedrock channel width to tectonic forcing: Insights from a numerical model, theoretical considerations, and comparison with field data. J Geophys Res: Earth Surf 114(F3). https://doi.org/10.1029/2008JF001133

  • Verrios S, Zygouri V, Kokkalas S (2004) Morphotectonic analysis in the Eliki fault zone (Gulf of Corinth, Greece). Bull of the Geol Soc of Greece 36(4):1706–1715

    Article  Google Scholar 

  • Wadia DN (1975) Geology of India, 4th edn. Tata McGraw-Hill, Tenth reprint (1989), New Delhi

    Google Scholar 

  • Wells SG, Bullard TF, Menges CM, Drake PG, Karas PA, Kelson KI, Ritter JB, Wesling JR (1988) Regional variations in tectonic geomorphology along a segmented convergent plate boundary pacific coast of Costa Rica. Geomorphology 1(3):239–265

    Article  Google Scholar 

  • Wolock DM, McCabe GJ (2000) Differences in topographic characteristics computed from 100 and 1000 m resolution digital elevation model data. Hydrol Process 14(6):987–1002

    Article  Google Scholar 

  • Zuchiewicz W (1980) The tectonic interpretation of longitudinal profiles of the Carpathians rivers. Ann Soc Geol Pol 50(3–4):311–328

    Google Scholar 

Download references

Funding

This research did not receive any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Rashid.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicting/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, I., Altaf, S. Evaluating the performance of multisource digital elevation models using morphometric parameters and field survey data over the mountainous landscapes of northwest Himalaya, India. Environ Earth Sci 80, 177 (2021). https://doi.org/10.1007/s12665-021-09499-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-09499-5

Keywords

Navigation