Skip to main content

A conjugate application of MODIS/Terra data and empirical method to assess reference evapotranspiration for the southwest region of Bangladesh

Abstract

Availability of water resources, especially irrigation water in the Southwest (SW) region of Bangladesh, is in threat due to climate change impacts, reduction of upstream flow, and excessive groundwater consumption. It is essential to assess the evapotranspiration (\(\mathrm{ET}\)), especially reference evapotranspiration (\({\mathrm{ET}}_{0}\)) to ensure efficient irrigation demand for this region. However, direct measurement of \({\mathrm{ET}}_{0}\) is a difficult task as empirical equation-based assessment requires a complex set of input data. As remote sensing (RS) technology has evolved as a viable alternative to the ground-based estimation of ET0, this study investigated whether it is possible to attain a reliable assessment of \({\mathrm{ET}}_{0}\) for the SW region of Bangladesh using satellite data. Land surface temperature (LST) data retrieved from the moderate-resolution imaging spectroradiometer (MODIS) satellite have been evaluated as an alternative of air temperature in three empirical \({\mathrm{ET}}_{0}\) assessment methods, namely the Hargreaves–Samani (HS), Thornthwaite (TH), and Blaney–Criddle (BC) methods. \({\mathrm{ET}}_{0}\) assessed from these methods have been calibrated and validated against the FAO-56 Penman–Monteith (PM) method. Several statistical indices, viz. root mean square error (RMSE), mean absolute error (MAE), mean relative error (MRE), and coefficient of determination (\({R}^{2}\)) have been used to evaluate the performance of \({\mathrm{ET}}_{0}\) assessment from the above-mentioned methods. MODIS-LST data have been found strongly correlated with air temperature (\({R}^{2}\) = 0.95). A good correlation in \({\mathrm{ET}}_{0}\) assessment has been found between the PM method and HS (\({R}^{2}\) = 0.85), TH (\({R}^{2}\) = 0.81), and BC (\({R}^{2}\) = 0.79) methods. With the calibrated result, the calibrated HS method provides the most accurate results compared to the other methods, with an average RMSE of 0.44 mm/day, MAE of 0.39 mm/day, and MRE of 12.34%. Considering the consistency of the findings with the previous studies, this method has been recommended for assessing \({\mathrm{ET}}_{0}\) under conditions of limited data availability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abedin MA, Collins AE, Habiba U, Shaw R (2019) Climate change, water scarcity, and health adaptation in Southwestern Coastal Bangladesh. Int J Disaster Risk Sci 10:28–42. https://doi.org/10.1007/s13753-018-0211-8

    Article  Google Scholar 

  2. Abtew W (1996) Evapotranspiration measurement and modeling for three wetland systems in South Florida. Water Resour Bull 32:465–473. https://doi.org/10.1111/j.1752-1688.1996.tb04044.x

    Article  Google Scholar 

  3. Akhavan S, Mousabeygi F, Peel MC (2018) Assessment of eight reference evapotranspiration (ETo) methods considering Köppen climate class in Iran. Hydrol Sci J 63:1468–1481. https://doi.org/10.1080/02626667.2018.1513654

    Article  Google Scholar 

  4. Albrecht F (1950) Die Methoden zur Bestimmung der Verdunstung der natürlichen Erdoberfläche. Arch für Meteorol Geophys und Bioklimatologie Ser B 2:1–38. https://doi.org/10.1007/BF02242718

    Article  Google Scholar 

  5. Alexandris S, Kerkides P (2003) New empirical formula for hourly estimations of reference evapotranspiration. Agric Water Manag 60:157–180. https://doi.org/10.1016/S0378-3774(02)00172-

    Article  Google Scholar 

  6. Alexandris S, Stricevic R, Petkovic S (2008) Comparative analysis of reference evapotranspiration from the surface of rainfed grass in central Serbia, calculated by six empirical methods against the Penman–Monteith formula. Eur Water 21:17–28

    Google Scholar 

  7. Ali AMS (2006) Rice to shrimp: land use/land cover changes and soil degradation in Southwestern Bangladesh. Land Use Policy 23:421–435. https://doi.org/10.1016/j.landusepol.2005.02.001

    Article  Google Scholar 

  8. Alkaeed O, Flores C, Jinno K, Tsutsumi A (2006) Comparison of several reference evapotranspiration methods for Itoshima Peninsula area, Fukuoka, Japan. Mem Fac Eng Kyushu Univ 66:1–14

    Google Scholar 

  9. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56

  10. Allen RG, Tasumi M, Trezza R (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J Irrig Drain Eng 133:380–394. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380)

    Article  Google Scholar 

  11. Anderson MC, Norman JM, Mecikalski JR, et al (2007) A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J Geophys Res 112:D10117. https://doi.org/10.1029/2006JD007506

  12. Azhar AH (2001) Short term planning and operation of irrigation systems, Ph.D. Dissertation. Victoria University of Technology, Melbourne, Australia

  13. Baier W, Robertson GW (1965) Estimation of latent evaporation from simple weather observations. Can J Plant Sci 45:276–284

    Article  Google Scholar 

  14. Barai KR, Harashina K, Satta N, Annaka T (2019) Comparative analysis of land-use pattern and socioeconomic status between shrimp- and rice- production areas in southwestern coastal Bangladesh: a land-use/cover change analysis over 30 years. J Coast Conserv 23:531–542. https://doi.org/10.1007/s11852-019-00682-2

    Article  Google Scholar 

  15. Barreto Neto AA, Marchesi AF (2012) Application of MODIS LST data for calculation of evapotranspiration in the state of Espírito Santo, Brazil. In: 32nd EARSEL Symposium 2012. European Association of Remote Sensing Laboratories. Mykonos Island, Greece, vol. 32, pp 325–332. Available at: http://www.earsel.org/symposia/2012-symposiumMykonos/Proceedings/11-01_EARSeL-Symposium-2012.pdf

  16. Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM (1998) A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation J Hydrol 212–213:198–212. https://doi.org/10.1016/S0022-1694(98)00253-4

    Article  Google Scholar 

  17. Berti A, Tardivo G, Chiaudani A et al (2014) Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy. Agric Water Manag 140:20–25. https://doi.org/10.1016/j.agwat.2014.03.015

    Article  Google Scholar 

  18. Blaney HF, Criddle WD (1962) Determining consumptive use and irrigation water requirements, USDA Technical Bulletin 1275. US Department of Agriculture, Beltsville

    Google Scholar 

  19. Cai J, Liu Y, Lei T, Pereira LS (2007) Estimating reference evapotranspiration with the FAO Penman–Monteith equation using daily weather forecast messages. Agric For Meteorol 145:22–35. https://doi.org/10.1016/j.agrformet.2007.04.012

    Article  Google Scholar 

  20. Carlson TN, Capehart WJ, Gillies RR (1995) A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sens Environ 54:161–167. https://doi.org/10.1016/0034-4257(95)00139-R

    Article  Google Scholar 

  21. Cholpankulov ED, Inchenkova OP, Paredes P, Pereira LS (2008) Cotton irrigation scheduling in central Asia: model calibration and validation with consideration of groundwater contribution. Irrig Drain 57:516–532. https://doi.org/10.1002/ird.390

    Article  Google Scholar 

  22. Coll C, Caselles V (1997) A split-window algorithm for land surface temperature from advanced very high resolution radiometer data: validation and algorithm comparison. J Geophys Res Atmos 102:16697–16713. https://doi.org/10.1029/97JD00929

    Article  Google Scholar 

  23. Coll C, Wan Z, Galve JM (2009) Temperature-based and radiance-based validations of the V5 MODIS land surface temperature product. J Geophys Res 114:D20102. https://doi.org/10.1029/2009JD012038

    Article  Google Scholar 

  24. Dastagir MR (2015) Modeling recent climate change induced extreme events in Bangladesh: a review. Weather Clim Extrem 7:49–60. https://doi.org/10.1016/j.wace.2014.10.003

    Article  Google Scholar 

  25. De Bruin HAR, Keijman JQ (1979) The Priestley–Taylor evaporation model applied to a large, Shallow Lake in the Netherlands. J Appl Meteorol 18:898–903. https://doi.org/10.1175/1520-0450(1979)018%3c0898:TPTEMA%3e2.0.CO;2

    Article  Google Scholar 

  26. Delogu E, Boulet G, Olioso A et al (2012) Reconstruction of temporal variations of evapotranspiration using instantaneous estimates at the time of satellite overpass. Hydrol Earth Syst Sci 16:2995–3010. https://doi.org/10.5194/hess-16-2995-2012

    Article  Google Scholar 

  27. Djaman K, O’Neill M, Diop L et al (2018) Evaluation of the Penman–Monteith and other 34 reference evapotranspiration equations under limited data in a semiarid dry climate. Theor Appl Climatol. https://doi.org/10.1007/s00704-018-2624-0

    Article  Google Scholar 

  28. El-Shirbeny MA, Abdellatif B, Ali AEM, Saleh NH (2016) Evaluation of Hargreaves based on remote sensing method to estimate potential crop evapotranspiration. Int J Geomate 11:2143–2149

    Google Scholar 

  29. Fahad MGR, Islam AKMS, Nazari R et al (2018) Regional changes of precipitation and temperature over Bangladesh using bias-corrected multi-model ensemble projections considering high-emission pathways. Int J Climatol 38:1634–1648. https://doi.org/10.1002/joc.5284

    Article  Google Scholar 

  30. FAO (2009) CROPWAT 8.0 Software: Food and Agriculture Organization, Rome, Italy, Available at: http://www.fao.org/land-water/databases-and-software/cropwat/en/. Accessed 2 Feb 2019

  31. Faruque G, Sarwer RH, Karim M et al (2017) The evolution of aquatic agricultural systems in Southwest Bangladesh in response to salinity and other drivers of change. Int J Agric Sustain 15:185–207. https://doi.org/10.1080/14735903.2016.1193424

    Article  Google Scholar 

  32. Fischer G, Tubiello FN, van Velthuizen H, Wiberg DA (2007) Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol Forecast Soc Change 74:1083–1107. https://doi.org/10.1016/j.techfore.2006.05.021

    Article  Google Scholar 

  33. Fooladmand HR, Ahmadi SH (2009) Monthly spatial calibration of Blaney–Criddle equation for calculating monthly ETo in south of Iran. Irrig Drain 58:234–245. https://doi.org/10.1002/ird.409

    Article  Google Scholar 

  34. Fox DG (1981) Judging air quality model performance. Bull Am Meteorol Soc 62:599–609. https://doi.org/10.1175/1520-0477(1981)062%3c0599:JAQMP%3e2.0.CO;2

    Article  Google Scholar 

  35. Gavilán P, Lorite IJ, Tornero S, Berengena J (2006) Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment. Agric Water Manag 81:257–281. https://doi.org/10.1016/j.agwat.2005.05.001

    Article  Google Scholar 

  36. Gosling SN, Arnell NW (2016) A global assessment of the impact of climate change on water scarcity. Clim Change 134:371–385. https://doi.org/10.1007/s10584-013-0853-x

    Article  Google Scholar 

  37. Government of Bangladesh (2009) Bangladesh climate change strategy and action plan 2009. Ministry of Environment & Forests, Government of the People’s Republic of Bangladesh, Dhaka

  38. Gowda PH, Chavez JL, Colaizzi PD et al (2008) ET mapping for agricultural water management: present status and challenges. Irrig Sci 26:223–237. https://doi.org/10.1007/s00271-007-0088-6

    Article  Google Scholar 

  39. Hamon WR (1963) Computation of direct runoff amounts from storm rainfall. Int Assoc Sci Hydrol Publ 63:52–62

    Google Scholar 

  40. Hansen S (1984) Estimation of potential and actual evapotranspiration. Hydrol Res 15:205–212. https://doi.org/10.2166/nh.1984.0017

    Article  Google Scholar 

  41. Harbeck GE (1962) A practical field technique for measuring reservoir evaporation utilizing mass-transfer theory. U.S. Geological Survey Professional Paper 272-E:101–105

  42. Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96–99

    Article  Google Scholar 

  43. Hoedjes JCB, Chehbouni A, Jacob F et al (2008) Deriving daily evapotranspiration from remotely sensed instantaneous evaporative fraction over olive orchard in semi-arid Morocco. J Hydrol 354:53–64. https://doi.org/10.1016/j.jhydrol.2008.02.016

    Article  Google Scholar 

  44. Hossain MA, Siddique MNA (2015) Water–a limiting resource for sustainable agriculture in Bangladesh. EC Agric 1:124–137

    Google Scholar 

  45. Huang R, Zhang C, Huang J et al (2015) Mapping of daily mean air temperature in agricultural regions using daytime and nighttime land surface temperatures derived from TERRA and AQUA MODIS data. Remote Sens 7:8728–8756. https://doi.org/10.3390/rs70708728

    Article  Google Scholar 

  46. IPCC (2013) Climate change 2013: the physical science basis: working group I contribution to the Fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  47. Irmak A, Irmak S, Martin DL (2008) Reference and crop evapotranspiration in south central Nebraska. I: comparison and analysis of grass and alfalfa-reference evapotranspiration. J Irrig Drain Eng 134:690–699. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:6(690)

    Article  Google Scholar 

  48. Islam AS, Bala SK (2008) Assessment of potato phenological characteristics using MODIS-derived NDVI and LAI information. GI Science Remote Sens 45:454–470. https://doi.org/10.2747/1548-1603.45.4.454

    Article  Google Scholar 

  49. Islam GMT, Islam AKMS, Shopan AA et al (2015) Implications of agricultural land use change to ecosystem services in the Ganges delta. J Environ Manage 161:443–452. https://doi.org/10.1016/j.jenvman.2014.11.018

    Article  Google Scholar 

  50. Jensen ME, Burman RD, Allen RG (1990) Evapotranspiration and irrigation water requirements: A manual prepared by the Committee on irrigation water requirements of the irrigation and drainage division of the ASCE, ASCE manuals and reports on engineering practice No. 70. New York

  51. Jiang L, Islam S (1999) A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations. Geophys Res Lett 26:2773–2776. https://doi.org/10.1029/1999GL006049

    Article  Google Scholar 

  52. Kabir H, Golder J (2017) Rainfall variability and its impact on crop agriculture in southwest region of Bangladesh. J Climatol Weather Forecast. https://doi.org/10.4172/2332-2594.1000196

    Article  Google Scholar 

  53. Kendall MG (1948) Rank correlation methods, 1st edn. Charles Griffin & Company Ltd., London

    Google Scholar 

  54. Kharrufa NS (1985) Simplified equation for evapotranspiration in arid regions. Beiträge zur Hydrol 5:39–47

    Google Scholar 

  55. Lang D, Zheng J, Shi J et al (2017) A comparative study of potential evapotranspiration estimation by eight methods with FAO Penman-Monteith method in southwestern China. Water 9:734. https://doi.org/10.3390/w9100734

    Article  Google Scholar 

  56. Lázár AN, Clarke D, Adams H et al (2015) Agricultural livelihoods in coastal Bangladesh under climate and environmental change—a model framework. Environ Sci Process Impacts 17:1018–1031. https://doi.org/10.1039/C4EM00600C

    Article  Google Scholar 

  57. Linacre ET (1977) A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agric Meteorol 18:409–424. https://doi.org/10.1016/0002-1571(77)90007-3

    Article  Google Scholar 

  58. Liu Y, Luo Y (2010) A consolidated evaluation of the FAO-56 dual crop coefficient approach using the lysimeter data in the North China Plain. Agric Water Manag 97:31–40. https://doi.org/10.1016/j.agwat.2009.07.003

    Article  Google Scholar 

  59. Loheide SP, Gorelick SM (2005) A local-scale, high-resolution evapotranspiration mapping algorithm (ETMA) with hydroecological applications at riparian meadow restoration sites. Remote Sens Environ 98:182–200. https://doi.org/10.1016/j.rse.2005.07.003

    Article  Google Scholar 

  60. Lu J, Sun G, McNulty SG, Amatya DM (2005) A comparasion of six potential evapotranspiration methods for regional use in the Southeastern United States. J Am Water Resour Assoc 41:621–633. https://doi.org/10.1111/j.1752-1688.2005.tb03759.x

    Article  Google Scholar 

  61. Maeda EE, Wiberg DA, Pellikka PKE (2011) Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya. Appl Geogr 31:251–258. https://doi.org/10.1016/j.apgeog.2010.05.011

    Article  Google Scholar 

  62. Mahringer W (1970) Verdunstungsstudien am Neusiedler See. Arch Met Geoph Biokl Ser B 18:1–20. https://doi.org/10.1007/BF02245865

    Article  Google Scholar 

  63. Mainuddin K, Rahman A, Islam N, Quasem S (2011) Planning and costing agriculture’s adaptation to climate change in the salinity-prone cropping system of Bangladesh. International Institute for Environment and Development (IIED), London, UK

  64. Makkink GF (1957) Testing the Penman formula by means of lysimeters. J Inst Water Eng 11:277–288

    Google Scholar 

  65. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245. https://doi.org/10.2307/1907187

    Article  Google Scholar 

  66. Menenti M, Choudhury BJ (1993) Parameterization of land surface evapotranspiration using a location dependent potential evapotranspiration and surface temperature range. In: Bolle HJ et al. (eds) Proceedings of exchange processes at the land surface for a range of space and time scales. IAHS, Oxfordshire, vol 212, pp 561–568

  67. Minacapilli M, Consoli S, Vanella D et al (2016) A time domain triangle method approach to estimate actual evapotranspiration: application in a Mediterranean region using MODIS and MSG-SEVIRI products. Remote Sens Environ 174:10–23. https://doi.org/10.1016/j.rse.2015.12.018

    Article  Google Scholar 

  68. Mirza MMQ (2003) Climate change and extreme weather events: can developing countries adapt? Clim Policy 3:233–248. https://doi.org/10.1016/S1469-3062(03)00052-4

    Article  Google Scholar 

  69. Moeletsi ME, Walker S, Hamandawana H (2013) Comparison of the Hargreaves and Samani equation and the Thornthwaite equation for estimating dekadal evapotranspiration in the Free State Province, South Africa. Phys Chem Earth, Parts A/B/C 66:4–15

    Article  Google Scholar 

  70. Morales-Salinas L, Ortega-Farías S, Riveros-Burgos C et al (2017) Monthly calibration of Hargreaves-Samani equation using remote sensing and topoclimatology in central-southern Chile. Int J Remote Sens 38:7497–7513. https://doi.org/10.1080/01431161.2017.1323287

    Article  Google Scholar 

  71. Mostovoy GV, King R, Reddy KR, Kakani VG (2005) Using MODIS LST data for high-resolution estimates of daily air temperature over Mississippi. In: Proceedings of the 3rd international workshop on the analysis of multi-temporal remote sensing images. IEEE, Biloxi, MS, USA, pp 76–80

  72. Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111:519–536. https://doi.org/10.1016/j.rse.2007.04.015

    Article  Google Scholar 

  73. Mu Q, Zhao M, Running SW (2013) MODIS global terrestrial evapotranspiration (ET) product (NASA MOD16A2/A3), algorithm theoretical basis document, collection 5. Numerical Terradynamic Simulation Group, University of Montana, Missoula, MT, USA, NASA HQ

  74. Murray SJ, Foster PN, Prentice IC (2012) Future global water resources with respect to climate change and water withdrawals as estimated by a dynamic global vegetation model. J Hydrol 448–449:14–29. https://doi.org/10.1016/j.jhydrol.2012.02.044

    Article  Google Scholar 

  75. Nandi S (2011) Investigation of the effect of climate change on evapotranspiration rate in different hydrological regions of Bangladesh, M.Sc. Dissertation. Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

  76. Newton IH, Islam AT, Islam AS et al (2018) Yield prediction model for potato using Landsat time series images driven vegetation indices. Remote Sens Earth Syst Sci 1:29–38. https://doi.org/10.1007/s41976-018-0006-0

    Article  Google Scholar 

  77. Norman JM, Kustas WP, Humes KS (1995) Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric For Meteorol 77:263–293. https://doi.org/10.1016/0168-1923(95)02265-Y

    Article  Google Scholar 

  78. Nowreen S, Murshed SB, Islam AS et al (2015) Changes of rainfall extremes around the haor basin areas of Bangladesh using multi-member ensemble RCM. Theor Appl Climatol 119:363–377. https://doi.org/10.1007/s00704-014-1101-7

    Article  Google Scholar 

  79. NWMP (2004) National water management plan. Ministry of Water Resources, Government of Bangladesh

  80. Olivera-Guerra L, Mattar C, Merlin O et al (2017) An operational method for the disaggregation of land surface temperature to estimate actual evapotranspiration in the arid region of Chile. ISPRS J Photogramm Remote Sens 128:170–181. https://doi.org/10.1016/j.isprsjprs.2017.03.014

    Article  Google Scholar 

  81. Oudin L, Hervieu F, Michel C et al (2005) Which potential evapotranspiration input for a lumped rainfall–runoff model? J Hydrol 303:290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026

    Article  Google Scholar 

  82. Papadavid G, Hadjimitsis DG, Toulios L, Michaelides S (2013) A modified SEBAL modeling approach for estimating crop evapotranspiration in semi-arid conditions. Water Resour Manag 27:3493–3506. https://doi.org/10.1007/s11269-013-0360-x

    Article  Google Scholar 

  83. Peng L, Li Y, Feng H (2017) The best alternative for estimating reference crop evapotranspiration in different sub-regions of mainland China. Sci Rep 7:5458. https://doi.org/10.1038/s41598-017-05660-y

    Article  Google Scholar 

  84. Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc London Ser A 193:120–145. https://doi.org/10.1098/rspa.1948.0037

    Article  Google Scholar 

  85. Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81–92. https://doi.org/10.1175/1520-0493(1972)100%3c0081:OTAOSH%3e2.3.CO;2

    Article  Google Scholar 

  86. Rahimikhoob A, Hosseinzadeh M (2014) Assessment of Blaney-Criddle equation for calculating reference evapotranspirationj with NOAA/AVHRR data. Water Resour Manag 28:3365–3375. https://doi.org/10.1007/s11269-014-0670-7

    Article  Google Scholar 

  87. Ravazzani G, Corbari C, Morella S et al (2012) Modified Hargreaves–Samani equation for the assessment of reference evapotranspiration in Alpine River Basins. J Irrig Drain Eng 138:592–599. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000453

    Article  Google Scholar 

  88. Rodell M, Famiglietti JS, Wiese DN et al (2018) Emerging trends in global freshwater availability. Nature 557:651–659. https://doi.org/10.1038/s41586-018-0123-1

    Article  Google Scholar 

  89. Roerink G, Su Z, Menenti M (2000) S-SEBI: a simple remote sensing algorithm to estimate the surface energy balance. Phys Chem Earth Part B Hydrol Ocean Atmos 25:147–157. https://doi.org/10.1016/S1464-1909(99)00128-8

    Article  Google Scholar 

  90. Romanenko VA (1961) Computation of the autumn soil moisture using a universal relationship for a large area. In: Proceedings, Ukrainian Hydrometeorological Research Institute, No. 3. Kiev

  91. Sánchez JM, Scavone G, Caselles V et al (2008) Monitoring daily evapotranspiration at a regional scale from Landsat-TM and ETM+ data: application to the Basilicata region. J Hydrol 351:58–70. https://doi.org/10.1016/j.jhydrol.2007.11.041

    Article  Google Scholar 

  92. Schaaf CB, Gao F, Strahler AH et al (2002) First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens Environ 83:135–148. https://doi.org/10.1016/S0034-4257(02)00091-3

    Article  Google Scholar 

  93. Schewe J, Heinke J, Gerten D et al (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci 111:3245–3250. https://doi.org/10.1073/pnas.1222460110

    Article  Google Scholar 

  94. Seguin B, Itier B (1983) Using midday surface temperature to estimate daily evaporation from satellite thermal IR data. Int J Remote Sens 4:371–383. https://doi.org/10.1080/01431168308948554

    Article  Google Scholar 

  95. Senay GB, Bohms S, Singh RK et al (2013) Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach. J Am Water Resour Assoc 49:577–591. https://doi.org/10.1111/jawr.12057

    Article  Google Scholar 

  96. Shahid S (2011) Impact of climate change on irrigation water demand of dry season Boro rice in northwest Bangladesh. Clim Change 105:433–453. https://doi.org/10.1007/s10584-010-9895-5

    Article  Google Scholar 

  97. Shen S, Leptoukh GG (2011) Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature. Environ Res Lett 6:045206. https://doi.org/10.1088/1748-9326/6/4/045206

    Article  Google Scholar 

  98. Shiri J (2019) Modeling reference evapotranspiration in island environments: assessing the practical implications. J Hydrol 570:265–280. https://doi.org/10.1016/j.jhydrol.2018.12.068

    Article  Google Scholar 

  99. Shopan AA, Islam AKMS, Dey NC, Bala SK (2013) Estimation of evapotranspiration of boro rice in the northwest region of Bangladesh. In: 4th International Conference on Water & Flood Management. Dhaka, Bangladesh, pp 325–336

  100. Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops-an energy combination theory. Quart J R Meteorol Soc 111:839–855. https://doi.org/10.1002/qj.49711146910

    Article  Google Scholar 

  101. Singh RK, Irmak A (2011) Treatment of anchor pixels in the METRIC model for improved estimation of sensible and latent heat fluxes. Hydrol Sci J 56:895–906. https://doi.org/10.1080/02626667.2011.587424

    Article  Google Scholar 

  102. Su Z (2002) The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 6:85–100. https://doi.org/10.5194/hess-6-85-2002

    Article  Google Scholar 

  103. Swapan MSH, Gavin M (2011) A desert in the delta: Participatory assessment of changing livelihoods induced by commercial shrimp farming in Southwest Bangladesh. Ocean Coast Manag 54:45–54. https://doi.org/10.1016/j.ocecoaman.2010.10.011

    Article  Google Scholar 

  104. Tabari H, TalaeeSome’e PHBS (2013) Spatial modelling of reference evapotranspiration using adjusted Blaney-Criddle equation in an arid environment. Hydrol Sci J 58:408–420. https://doi.org/10.1080/02626667.2012.755265

    Article  Google Scholar 

  105. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  106. Turc L (1961) Evaluation des besoins en eau d’irrigation, évapotranspiration potentielle, formule climatique simplifee et mise a jour. Ann Agron 12:13–49 ((In French))

    Google Scholar 

  107. Valiantzas JD (2013) Simple ET0 Forms of Penman’s equation without wind and/or humidity data. II: comparisons with reduced Set-FAO and other methodologies. J Irrig Drain Eng 139:9–19. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000502

    Article  Google Scholar 

  108. Vancutsem C, Ceccato P, Dinku T, Connor SJ (2010) Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens Environ 114:449–465. https://doi.org/10.1016/j.rse.2009.10.002

    Article  Google Scholar 

  109. Villa Nova NA, Pereira AB, Shock CC (2007) Estimation of reference evapotranspiration by an energy balance approach. Biosyst Eng 96:605–615. https://doi.org/10.1016/j.biosystemseng.2006.12.005

    Article  Google Scholar 

  110. Wan Z (2008) New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens Environ 112:59–74. https://doi.org/10.1016/j.rse.2006.06.026

    Article  Google Scholar 

  111. Wang K, Wan Z, Wang P et al (2005) Estimation of surface long wave radiation and broadband emissivity using Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature/emissivity products. J Geophys Res 110:D11109. https://doi.org/10.1029/2004JD005566

    Article  Google Scholar 

  112. Willmott CJ (1982) Some comments on the evaluation of model performance. Bull Am Meteorol Soc 63:1309–1313. https://doi.org/10.1175/1520-0477(1982)063%3c1309:SCOTEO%3e2.0.CO;2

    Article  Google Scholar 

  113. Xu C, Singh VP (2001) Evaluation and generalization of temperature-based methods for calculating evaporation. Hydrol Process 15:305–319. https://doi.org/10.1002/hyp.119

    Article  Google Scholar 

  114. Youneszadeh S, Amiri N, Pilesjo P (2015) The effect of land use change on land surface temperature in the Netherlands. Int Arch Photogramm 40:745–748. https://doi.org/10.5194/isprsarchives-XL-1-W5-745-2015

    Article  Google Scholar 

  115. Zeng L, Wardlow B, Tadesse T et al (2015) Estimation of daily air temperature based on MODIS land surface temperature products over the corn belt in the US. Remote Sens 7:951–970. https://doi.org/10.3390/rs70100951

    Article  Google Scholar 

  116. Zhao M, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95:164–176. https://doi.org/10.1016/j.rse.2004.12.011

    Article  Google Scholar 

  117. Zhao S, Yang Y, Zhang F et al (2015) Rapid evaluation of reference evapotranspiration in Northern China. Arab J Geosci 8:647–657. https://doi.org/10.1007/s12517-013-1263-0

    Article  Google Scholar 

  118. Zhu W, Lű A, Jia S (2013) Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sens Environ 130:62–73. https://doi.org/10.1016/j.rse.2012.10.034

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Bangladesh Meteorological Department (BMD) for providing the requisite meteorological data. The authors thank the Bangladesh University of Engineering and Technology (BUET) for providing financial support for this research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Akm Saiful Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2424 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Newton, I.H., Islam, G.M.T., Islam, A.S. et al. A conjugate application of MODIS/Terra data and empirical method to assess reference evapotranspiration for the southwest region of Bangladesh. Environ Earth Sci 80, 223 (2021). https://doi.org/10.1007/s12665-021-09482-0

Download citation

Keywords

  • Irrigation demand
  • Reference evapotranspiration
  • Remote sensing
  • MODIS
  • Empirical methods
  • Southwest Bangladesh