Abstract
The dissolution kinetics of different varieties of natural gypsum samples with different porosity and content of insoluble impurities are experimentally investigated under unsaturated conditions. The main goal of this work is to verify whether and how the petrophysical and petrographic nature of gypsum influence its dissolution rate. Gypsum samples were taken from Priabonian (Ludian) and Lutetian formations located in the north-eastern suburbs of Paris, where the development of sinkholes due to gypsum dissolution is a common phenomenon. Experiments using the rotating disk technique allow us to determine the kinetic rate model parameters of each sample in pure water following the empirical rate expression derived from mixed kinetic theory. The kinetic order n shows a dispersion around a mean value \(n=1.2\) and k, the pure dissolution rate coefficient varies according to the facies and the experimental conditions (k \(\approx \,1\times 10^{-6}\) to 8\(\times 10^{-6}\) mmol/\(\hbox {cm}^2/\hbox {s}\)). These results are adjusted according to the specific roughness and texture of each sample, for the results to be more representative of in situ conditions. Batch experiments are also performed to evaluate the extremely low dissolution rates when the solution is close to equilibrium. The results reveal a double kinetics: far from equilibrium, the dissolution rates show that the linear behavior and the kinetic parameters are relatively close with the values found using the rotating disk method. For concentrations greater than 0.94 ± 0.02 of the equilibrium concentration \(C_\mathrm{{ref}}\), the dissolution rates show a linear behavior but with greater slope depending on the texture of the mineral. No changes of the dissolution rates were observed on pure gypsum crystals when non soluble solid impurities are added. However, a small degree of uncertainty around the value of \(C_\mathrm{{ref}}\) show a significant effect on the parameters of the second kinetics.
Similar content being viewed by others
References
Alkattan M, Oelkers EH, Dandurand JL, Schott J (1997) Experimental studies of halite dissolution kinetics, the effect of saturation state and the presence of trace metals. Chem Geol 137(3–4):201–219
Barton AFM, Wilde NM (1971) Dissolution rates of polycrystalline samples of gypsum and orthorhombic forms of calcium sulphate by a rotating disc method. Trans Faraday Soc 67:3590–3597
Beyssac E, Lavigne J (2005) Dissolution study of active pharmaceutical ingredients using the flow through apparatus USP 4. Dissolution Technologies, p 23
Bruckenstein S, Sharkey JW, Yip JY (2002) Effect of polishing with different size abrasives on the current response at a rotating disk electrode. Anal Chem 57:368–371
Burgos-Cara A, Putnis CV, Rodriguez-Navarro C, Ruiz-Agudo E (2016) Hydration effects on gypsum dissolution revealedby in situ nanoscale atomic force microscopy observations. Geochimica et Cosmochimica Acta 179:110–122
Chardon M, Nicod J (1996) Gypsum karst of France. Int J Speleol 25(3–4):203–208
Charmoille A (2011) Etude des processus de dissolution affectant le sous-sol du bois de la tussion (seine-saint-denis), evaluation de l’aléa et proposition de solutions d’aménagements adaptées. Tech. rep., Ineris, Verneuil-en-Halatte, France
Charmoille A, Lecomte A, Daupley X (2013) Evaluation de l’aléa mouvements de terrain lié à la dissolution du gypse sur les communes de sevran, villepinte et tremblay, seine-saint-denis. Île-de-france. Tech. rep, Ineris, Verneuil-en-Halatte, France
Charmoille A, Lecomte A, Kreziak C (2018) Dissolution naturelle du gypse dans le sous-sol. Technical report, Ineris & Cerema
Christoffersen J, Christoffersen M (1976) The kinetics of dissolution of calcium sulphate dihydrate in water. J Cryst Growth 35(1):79–88
Colombani J (2008) Measurement of the pure dissolution rate constant of a mineral in water. Geochimica et Cosmochimica Acta 72(23):5634–5640
Colombani J (2012) Dissolution measurement free from mass transport. Pure Appl Chem 85(1):61–70
Colombani J, Bert J (2007) Holographic interferometry study of the dissolution and diffusion of gypsum in water. Geochimica et Cosmochimica Acta 71(8):1913–1920
Dai Z, Kan AT, Shi W, Zhang N, Zhang F, Yan F, Bhandari N, Zhang Z, Liu Y, Ruan G, Tomson MB (2016) Solubility measurements and predictions of gypsum, anhydrite, and calcite over wide ranges of temperature, pressure, and ionic strength with mixed electrolytes. Rock Mech Rock Eng 50:327–339
Daupley X, Laouafa F, Billiotte J, Quintard M (2016) La dissolution du gypse : quantifier les phénomènes. Mines & Carrières société de l’industrie minérale pp 35–43
Diffre P (1972) Hydrogéologie de paris et de sa banlieue. La Houille Blanche 8:665–671
Dokoumetzidis A, Macheras P (2006) A century of dissolution research: From noyes and whitney to the biopharmaceutics classification system. Int J Pharm 321:1–11
Dove PM, Platt FM (1996) Compatible real-time rates of mineral dissolution by atomic force microscopy (AFM). Chem Geol 127(4):331–338
Dreybrodt W (1996) Principles of early development of Karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models. Water Resour Res 32(9):2923–2935
Durie R, Jessen F (1964) Mechanism of the dissolution of salt in the formation of underground salt cavities. Soc Pet Eng 4(2):183–190
Egal E, Kreziak c, Saitta A, Marlinge J, Priol G (2017) Méthodologie de détection des zones déstructurées et des cavités dans les terrains gypseux parisiens le long de la ligne 16 du grand paris express. Congrès International de l’AFTES
Gregory DP, Riddiford AC (1956) 731. Transport to the surface of a rotating disc. Journal of the Chemical Society (Resumed), pp 3756–3764
Guo J (2015) Modélisation numèrique de la dissolution des cavitès karstiques. PhD thesis, université de Toulouse
Guo J, Laouafa F, Quintard M (2016) A theoretical and numerical framework for modeling gypsum cavity dissolution: modeling gypsum cavity dissolution. Int J Numer Anal Methods Geomech 40(12):1662–1689
Gysel M (2002) Anhydrite dissolution phenomena: three case histories ofanhydrite karst caused by water tunnel operation. Rock Mech Rock Eng 35:1–21
James A, Lupton A (1978) Gypsum and anhydrite in foundations of hydraulic structures. Geotechnique 28(3):249–272
Jaworska J (2012) Crystallization, alternation and recrystallization of sulphates. In: Advances in crystallization processes, Adam Mickiewicz University. Poland., chap 18, pp 465–490
Jeschke AA, Dreybrodt W (2002) Dissolution rates of minerals and their relation to surface morphology. Geochimica et Cosmochimica Acta 66(17):3055–3062
Jeschke AA, Vosbeck K, Dreybrodt W (2001) Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics. Geochimica et Cosmochimica Acta 65(1):27–34
Klimchouk A (1996) Dissolution and conversions of gypsum and anhydrite. Int J Speleol 25(3):21–36
Kreziak C, Dumont E (2018) Caractérisation des mécanismes de dissolution du gypse projet de recherche et de développement. Tech. rep., Cerema, Trappes, France
Labourguigne P, Mégnien C, Rampon G (1972) Etude de la répartition géographique du gypse antéludien et des risques engendrés par sa dissolution dans le nord-est de la région parisienne. BRGM, Orleans
Lamé A (2013) Modélisation hydrogéologique des aquifères de paris et impacts des aménagements du sous-sol sur les écoulements souterrains. Ph.D. thesis, MINES ParisTech, France
Lasaga A (1998) Kinetic theory in the earth sciences. Princeton University Press, Princeton
Lebedev AL (2015) Kinetics of gypsum dissolution in water. Geochem Int 53(9):811–824
Lebedev AL, Lekhov A (1990) Dissolution kinetics of natural-gypsum in water at 5–25\(^\circ \)C. Lomonosov Moscow State Univ 27:85–94
Levich VG (1962) Physiochemical hydrodynamics. Prentice-Hall Edn, Englewood Cliffs
Liu ST, Nancollas G (1971) The kinetics of dissolution of calcium sulfate dihydrate. J Inorg Nucl Chem 33(8):2311–2316
Luo H, Laouafa F, Guo J, Quintard M (2014) Numerical modeling of three-phase dissolution of underground cavities using a diffuse interface model. Int J Numer Anal Methods Geomech 38(15):1600–1616
Marteau P (1993) Mémento roches et minéraux industriels Gypse et anhydrite. Tech. rep, BRGM, Orleans, France
Palmer AN (1991) Origin and morphology of limestone caves. Geol Soc Am Bull 103(1):1–21
Prunier-Leparmentier AM, David O, Schönberg M (2007) Dissolution du gypse à Paris: efficacité et carences de la réglementation. In: XIV\(^{es}\) journées techniques du comité français d’hydrogéologie. Lyon, Inspection générale des carrières (IGC), pp 205–213
Raines MA, Dewers TA (1997) Mixed transport reaction control of gypsum dissolution kinetics in aqueous solutions and initiation of gypsum karst. Chem Geol 140(1–2):29–48
Rickard D, Sjoeberg EL (1983) Mixed kinetic control of calcite dissolution rates. Am J Sci 283(8):815–830
Rolnick LS (1954) The stability of gypsum and anhydrite in the geologic environment. PhD thesis, Massachusetts Institute of Technology. USA
Sadeghiamirshahidi M, Vitton SJ (2018) Analysis of drying and saturating natural gypsum samples for mechanical testing. J Rock Mech Geotech Eng 11(2):219–227
SGP (2016) Volet E.2: Etude d’impact état initial. Tech. rep., Société du Grand Paris, Saint-Denis, France
Shiraki R, Brantley SL (1995) Kinetics of near-equilibrium calcite precipitation at 100\(^\circ \)C: An evaluation of elementary reaction-based and affinity-based rate laws. Geochimica et Cosmochimica Acta 59(8):1457–1471
Stawski TM, van Driessche AE, Ossorio M, Diego Rodriguez-Blanco J, Besselink R, Benning LG (2016) Formation of calcium sulfate through the aggregation of sub-3 nanometre primary species. Nat Commun 7(11177)
Sun J, Wang L, Yu G (2015) Effects of Na, Ca, Mg, and Al chloride salts on dissolution and phase stability of calcium sulfate dihydrate in aqueous solutions at 278.15 K to 308.15 K. J Chem Eng Data 60:2259–2566
Thierry P, Prunier-Leparmentier AM, Lembezat C, Vanoudheusden E, Vernoux JF (2009) 3D geological modelling at urban scale and mapping of ground movement susceptibility from gypsum dissolution: the Paris example (France). Eng Geol 105:51–64
Thorin R (1986) Caractéristiques des masses et marnes du gypse et de leurs faciès d’altération dans la région parisienne méthodologie des études géotechniques. Bull Int Assoc Eng Geol 33:73–89
Toulemeont M (1970) Observations géologiques sur les accidents de dissolution du gypse dans la région parisienn. In: Congrés international de géologie de l’ingénieur, Inspection générale des carrières (IGC), pp 89–98
Toulemont M (1987a) Les Gypses lutétiens du bassin de Paris sédimentation, karstification et conséquences géotechniques, géotechnique-mécanique des sols-sciences de la terre GT-24 edn. Rapports des laboratoires, Laboratoire central des ponts et chaussées, France
Toulemont M (1987b) Les risques d’instabilité liés au karst gypseux Lutétien de la région parisienne. Prevision en cartographie pp 109–116
Vieillefon J (1979) Contribution à l’amélioration de l’étude analytique des sols gypseux. Cahiers ORSTOM: Série pédologie 17(3):195–223
Wang F, Davis TE, Tarabara VV (2010) Crystallization of calcium sulfate dihydrate in the presence of colloidal silica. Ind Eng Chem Res 49(22):11344–11350
Zareeipolgardan B, Piednoir A, Colombani J (2017) Gypsum dissolution rate from atomic step kinetics. J Phys Chem C Am Chem Soc 17(121):9325
Acknowledgements
This research work was supported by Ineris in the framework of a partnership with the Société du Grand Paris which financially supports a part of this study and facilitate access to data and core samples collected during the geological and hydrogeological characterization of the future Grand Paris Express subway line.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
the authors declare that they have no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zaier, I., Billiotte, J., Charmoille, A. et al. The dissolution kinetics of natural gypsum: a case study of Eocene facies in the north-eastern suburbs of Paris. Environ Earth Sci 80, 8 (2021). https://doi.org/10.1007/s12665-020-09275-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12665-020-09275-x