Skip to main content

Advertisement

Log in

Geochemistry of surface waters and weathering effects in the upper catchment of the Ctalamochita River, Cordoba’s Sierras Pampeanas (Central Argentina)

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The chemical compositions of waters from the upper basin of the Ctalamochita River draining the Córdoba Pampean Ranges were analyzed to determine the chemical signature related to different forcings, geochemical processes, and solutes sources. The catchment has four sub-basins: Santa Rosa River, Grande River, Quillinzo River and De Los Sauces River. Most of the riverine chemical compositions are dominated by the HCO3–Ca2+-type to Ca2+–Na+–Mg2+. The specific conductivity is higher in the Santa Rosa and De Los Sauces rivers (347.59 and 409.00 μS/cm, respectively) than in the Grande and Quillinzo rivers (125.56 and 87.54 μS/cm, respectively). Mineral hydrolysis of andesine and oligoclase and the dissolution of calco-magnesian limestone, are the main dissolved solids contributors to the river waters. Higher contribution of bicarbonate ions is associated to those sub-basin having quarry mining activity. Saturation indexes show that the Santa Rosa and De Los Sauces rivers are saturated with calcite, dolomite, and talc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albarède F (2009) Geochemistry: an introduction, 2nd edn. Cambridge University Press, Cambridge, p 355

    Google Scholar 

  • Bonalumi A, Martino R, Sfragulla J, Baldo E, Zarco J, Carignano C (1999) Hoja Geológica 3166-IV, Villa Dolores. SEGEMAR, Buenos Aires

    Google Scholar 

  • Brantley SL, Goldhaber MB, Ragnarsdottir KV (2007) Crossing disciplines and scales to understand the Critical Zone. Elements 3:307–314

    Google Scholar 

  • Bui EN (2016) Data-driven Critical Zone science: a new paradigm. Sci Total Environ 568:587–593

    Google Scholar 

  • Butz S (2004) Science of earth systems. Delmar Learning, Estados Unidos, p 661p

    Google Scholar 

  • Campodonico VA, Martínez JO, Verdecchia SO, Pasquini AI, Depetris PJ (2014) Weathering assessment in the Achala Batholith of the Sierra de Comechingones, Córdoba, Central Argentina. I: Granite-regolith fractionation. CATENA 123:121–134

    Google Scholar 

  • Candiani JC, Ulacco H, Ojeda G (2013) Hoja geológica 3366-II Villa de Merlo, provincias de San Luis y Córdoba. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino, Buenos Aires

    Google Scholar 

  • Capitanelli RG (1979) Geomorfología. In: Vázquez JB et al (eds) Geografía física de la Provincia de Córdoba. Boldt, Córdoba

  • Carignano C (1999) Late Pleistocene to recent climate change in Córdoba province, Argentina: geomorphological evidence. Quaternary Internacional, pp 117–134.

  • Cartwright I, Atkinson AP, Gilfedder BS, Hofmann H, Cendón DI, Morgenstern U (2018) Using geochemistry to understand water sources and transit times in headwater streams of a temperate rainforest. Appl Geochem 99:1–12

    Google Scholar 

  • Chang J, Wang GX (2010) Major ions chemistry of groundwater in the arid region of Zhangye Basin, northwestern China. Environ Earth Sci 61:539–547

    Google Scholar 

  • Chen JS, Wang FY, Xia XH, Zhang LT (2002) Major element chemistry of the Changjiang (Yangtze River). Chem Geol 187:231–255

    Google Scholar 

  • Depetris PJ, Pasquini AI, Lecomte KL (2014) Weathering and the Riverine denudation of continents. Springer briefs in earth system sciences. Springer, Dordrecht

    Google Scholar 

  • Dessert C, Dupré B, François LM, Schott J, Gaillardet J, Chakrapani GJ, Bajpai S (2001) Erosion of Deccan Traps determined by river geochemistry: impact on the global climate and the 87Sr/86Sr ratio of seawater. Earth Planet Sci Lett 188:459–474

    Google Scholar 

  • Douglas TA (2006) Seasonality of bedrock weathering chemistry and CO2 consumption in a small watershed, the White River, Vermont. Chem Geol 231:236–251

    Google Scholar 

  • Eaton AD, Clesceri LS, Greenberg AE (1995) Standard methods for the examination of water and wastewater. A.P.H.A./A.W.W.A./ W.E.F, Washington DC

    Google Scholar 

  • Gaiero DM (1998) Hidrogeoquímica de un Sistema de la Región Semiárida; el Río Suquía, Córdoba, Argentina: I Fuentes de Solutos. Rev Asoc Geol Arg 53(2):167–186

    Google Scholar 

  • Gaiero DM (1999) Hidrogeoquímica de un sistema de la región semiárida; el Río Suquía, Córdoba, Argentina: II Transporte de sólidos disueltos, meteorización y consumo de CO2. Rev Asoc Geol Arg 53(3):337–347

    Google Scholar 

  • Gaiero DM, Román Ross G, Depetris PJ, Kempe S (1997) Spatial and temporal variability of total non-residual heavy metals content in stream sediments from the Suquía River system, Córdoba. Water Air Soil Pollut 93:303–319

    Google Scholar 

  • Gaiero DM, Pesci HE, Depetris PJ (1998) Effects of quarry mining and of other environmental impacts in the mountainous Chicam-Toctina drainage basin (Córdoba, Argentina). Environ Geol 34:159–166

    Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    Google Scholar 

  • García MG, Lecomte KL, Pasquini AI, Fórmica SM, Depetris PJ (2007) Sources of dissolved REE in mountainous streams draining granitic rocks, Sierras Pampeanas (Córdoba, Argentina). Geochim Cosmochim Acta 71:5355–5368

    Google Scholar 

  • Gibbs R (1970) Mechanisms controlling world water chemistry. Sci New Ser 170(3962):1088–1090

    Google Scholar 

  • Gifford C (2005) Looking at landscapes: weathering and Erosion. Evans Brothers Limited, Londres, Inglaterra, p 47p

    Google Scholar 

  • Gorrelle HA (1953) Classiffication of formation waters based on sodium chloride content. Am Asso Petrol Geol Bull 42:2513

    Google Scholar 

  • Guereschi A (2000) Estructura y petrología del basamento metamórfico del flanco oriental de la sierra Comechingones, pedanias Cañada de Álvarez y Río de Los Sauces, departamento Calamuchita, provincia de Córdoba. FCEFyN-UNC, Córdoba

    Google Scholar 

  • Hagedorn B, Whittier RB (2015) Solute sources and water mixing in a flashy mountainous stream (Pahsimeroi River, US Rocky Mountains): Implications on chemical weathering rate and groundwater–surface water interaction. Chem Geol 391:123–137

    Google Scholar 

  • Hem J (1985) Study and interpretation of the chemical characteristics of natural water, 3rdª edn. US Geological Survey, USA, p 210

    Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins. Hydrophysical approach to quantitative morphology. Geol Soc Amer Bull 56:275–370

    Google Scholar 

  • James D, Hanks R, Jurinak J (1982) Modern irrigated soils. Wiley, New York, p 235

    Google Scholar 

  • Lecomte KL, Pasquini AI, Depetris PJ (2005) Mineral weathering in a semiarid mountain river: Its assessment through PHREEQC inverse modeling. Aquat Geochem 11:173–194

    Google Scholar 

  • Lecomte KL, García MG, Formica SM, Depetris PJ (2009) Influence of geomorphological variables on mountainous stream water chemistry (Sierras Pampeanas de Córdoba, Argentina). Geomorphology 110:195–202

    Google Scholar 

  • Lecomte KL, García MG, Formica SM, Depetris PJ (2011) Hidroquímica de ríos de montaña (Sierras de Córdoba, Argentina): Elementos mayoritarios disueltos. Latin American Journal of Sedimentology and Basin Analysis, 18(1):43–62. Asociación Argentina de Sedimentología—ISSN 1669 7316

  • Martínez JO, Campodonico VA, Fórmica SM, Depetris PJ (2016) Weathering assessment in the Achala Batholith of the Sierra de Comechingones, Córdoba, Central Argentina. II: major hydrochemical characteristics and carbon dynamics. Environ Earth Sci 75:554–572

    Google Scholar 

  • Martínez JO, Campodonico VA, Fórmica SM, Depetris PJ (2018) Weathering assessment in the Achala Batholith of the Sierra de Comechingones, Córdoba, Central Argentina. III: appraising chemical weathering. Environ Earth Sci 77:242

    Google Scholar 

  • Meybeck M (1987) Global chemical weathering of superficial rocks estimated from rivers dissolved loads. Am J Sci, pp 401–428

  • Meybeck M (2005) Global occurrence of major elements in rivers. In: Drever JL (ed) Surface and ground water, weathering and soils. Elsevier, Amsterdam, pp 207–223

    Google Scholar 

  • Oliva P, Dupré B, Martin F, Viers J (2004) The role of trace minerals in chemical weathering in a high-elevation granitic watershed (Estibère, France): chemical and mineralogical evidence. Geochim Cosmochim Acta 68(10):2223–2244

    Google Scholar 

  • Parkhurst DL, Appelo CA (2013) Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey Techniques and Methods, book 6, chap. A43

  • Pasquini AI, Grosso L, Mangeau A, Depetris PJ (2002) Geoquímica de ríos de montaña en las Sierras Pampeanas: I. Vertientes y arroyos del batolito de Achala, provincia de Córdoba, Argentina. Rev Assoc Geol Argentina 57:437–444

    Google Scholar 

  • Pasquini AI, Lecomte KL, Depetris PJ (2004). Geoquímica de ríos de montaña en las Sierras Pampeanas: II. El río Los Reartes, Sierra de Comechingones, Provincia de Córdoba, Argentina. Rev Asoc Geol Arg, pp 129–140.

  • Pasquini AI, Lecomte KL, Piovano EL, Depetris PJ (2006) Recent rainfall and runoff variability in central Argentina. Quat Int 158:127–139

    Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. Am Geophys Union Trans 25:914–923

    Google Scholar 

  • Subsecretaría de Recursos Hídricos de la Nación Argentina (2019) Base de Datos Hidrológica Integrada (BDHI) https://bdhi.hidricosargentina.gob.ar

  • Rose AW, Hawkes HE, Webb JS (1979) Geochemistry in mineral exploration. Academic Press, London, p 657p

    Google Scholar 

  • Roy S, Gaillardet J, Allègre CJ (1999) Geochemistry of dissolved and suspended loads of the Seine river, France: anthropogenic impact, carbonate and silicate weathering. Geochim Cosmochim Acta 63(9):1277–1292

    Google Scholar 

  • Stallard RF, Edmond JM (1981) Geochemistry of the Amazon 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. J Geophys Res 86:9844–9858

    Google Scholar 

  • Stallard RF, Edmond JM (1983) Geochemistry of the Amazon II. The influence of geology and weathering environment on the dissolved load. J Geophys Res 88(C4):9671–9688

    Google Scholar 

  • Strahler AN (1952) Hypsometric (area altitude) analysis of erosional topology. Geol Soc Amer Bull 63:117–1142

    Google Scholar 

  • Tizro AT, Voudouris KS (2008) Groundwater quality in the semi-arid region of the Chahardouly basin, West Iran. Hydrol Process 22:3066–3078

    Google Scholar 

  • Torres MA, West AJ, Clark KE, Paris G, Bouchez J, Ponton C, Feakins SJ, Galy V, Adkins JF (2016) The acid and alkalinity budgets of weathering in the Andes-Amazon system: Insights into the erosional control of global biogeochemical cycles. Earth Planet Sci Lett 450:381–391

    Google Scholar 

  • Torres MA, Moosdorf N, Hartmann J, Adkins JF, West AJ (2017) Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks. Proceedings of the National Academy of Sciences, 114 (33).

  • Wade AJ, Smart C, Neal RP, Edwards AC (2002) Calcite saturation in the River Dee NE Scotland. Sci Total Environ 282–283:327–340

    Google Scholar 

Download references

Acknowledgements

This study was supported by the Córdoba Province Government through the project, “Base Environmental Studies in the Córdoba Province-PASMA II”. Also we acknowledge the supports from project Consolidar 2018–2019- 33620180100774CB, SECyT-UNC. We thanks to Fabián Leynaud (Minería de la Provincia de Córdoba) and Ariel Rampoldi (UNC) for their help during field campaigns. We fully appreciate the revision of the English grammar made by P. Depetris.

Funding

Funded by Secretaria de Ciencia y Tecnología—Universidad Nacional de Córdoba with Grant number 63620180100774CB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge O. Martínez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a part of the Topical Collection in Environmental Earth Sciences on “Advances in Environmental Geochemistry” guest edited by Dr. Eleanor Carol, Dr. Lucia Santucci and Dr. Lia Botto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Destéfanis, G., Martínez, J.O., Ribeiro, G. et al. Geochemistry of surface waters and weathering effects in the upper catchment of the Ctalamochita River, Cordoba’s Sierras Pampeanas (Central Argentina). Environ Earth Sci 79, 451 (2020). https://doi.org/10.1007/s12665-020-09200-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-020-09200-2

Keywords

Navigation