A multistage hybrid model for landslide risk mapping: tested in and around Mussoorie in Uttarakhand state of India

Abstract

The study aims to develop a hybrid model approach for the assessment of the landslide (LS) risk qualitatively. It involves multiple consecutive stages of statistical prediction, machine learning, and mapping in the GIS environment. At the first stage, a landslide susceptibility map has been developed using the analytic hierarchy process (AHP) algorithm, coupled with the binary logistic regression (BLR) technique. The AHP model incorporates 11 geo-hydrological and environmental variables as predictors sourced from remote-sensing datasets to generate the LS susceptibility as output. Twenty-three field-based validation locations validate the test result. Pearson's correlation coefficient (r) between the observed (\({{\mathrm{\L}}}_{{{\text{COMPUTED}}}}\)) and predicted (\({{\mathrm{\L}}}_{{{\text{PREDICTED}}}}\)) values of LS susceptibility is 0.928 at 0.01 level of significance. At the next stage, the LS risk is evaluated considering the ‘risk trio,’ i.e., the combination of the hazard, exposure, and vulnerability. This stage involves the transformation of a range of qualitative datasets to the virtual workspace of machine learning. The landslide risk output has been predicted with an initial fuzzy model, incorporating a set of 32 rules for membership functions (MF). This initial model uses randomly selected 20% datasets to tailor the fuzzy rules through the adaptive neuro-fuzzy interface (ANFIS). The training to ANFIS results in framing 120 fuzzy rules for the best possible prediction of the outcome. The final LS risk map from the ANFIS output shows that more than 70% area is under high-to-very high LS risk. The model is tested in a 5′ × 5′ grid around the famous hill station Mussoorie in the state of Uttarakhand, India. The model exhibits a satisfactory level of accuracy for the present-study area, which has made us confident to recommend it. The multistage model is worthy of being applied for landslide risk mapping for the similar kinds of study areas, and also for other areas of landslide with necessary customization as deemed necessary.

This is a preview of subscription content, access via your institution.

Fig. 1

(Source: Census of India)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Notes

  1. 1.

    See: https://www.dailypioneer.com/2015/state-editions/mussoorie-buildings-not-quake-safe.html. Accessed on 18 March 2017.

References

  1. Akbari A, Yahaya FBM, Azamirad M, Fanodi M (2004) Landslide susceptibility mapping using logistic regression analysis and GIS tools. EJGE 19(2014):1687–1696

    Google Scholar 

  2. Akgun A, Dag S, Bulut F (2008) Landslide susceptibility mapping for a landslide prone area (Findikli, NE of Turkey) by likelihood frequency ratio and weighted linear combination models. Environ Geol 54(6):1127–1143

    Google Scholar 

  3. Akgun A, Kıncal C, Pradhan B (2011a) Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey). Environ Monit Assess. https://doi.org/10.1007/s10661-011-2352-8

    Article  Google Scholar 

  4. Akgun A, Sezer EA, Nefeslioglu HA, Gokceoglu C, Pradhan B (2011b) An easy- to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Comput Geosci 38(1):23–34

    Google Scholar 

  5. Anbalagan R, Singh B (1996) Landslide hazard and risk assessment mapping of mountainous terrains—a case study from Kumaun Himalaya, India. Eng Geol 43(1996):237–246

    Google Scholar 

  6. Bai S, Lü G, Jian W, Zhou P, Ding L (2010) GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China. Environ Earth Sci 62:139–149. https://doi.org/10.1007/s12665-010-0509-3

    Article  Google Scholar 

  7. Ballabio C, Sterlacchini S (2012) Support vector machines for landslide susceptibility mapping : the Staff or a River Basin casestudy, Italy. Math Geosci 44:1–24

    Google Scholar 

  8. Barnard PL, Owen LA, Sharma MC, Finkel RC (2001) Natural and human-induced land sliding in the Garhwal Himalaya of northern India. Geomorphology 40:21–35. https://doi.org/10.1016/S0169-555X(01)00035-6

    Article  Google Scholar 

  9. Bogardi I, Bardossy A, Mays MD, Duckstein L (1996) Risk assessment and fuzzy logic as related to environmental science. SSSA Special publ. 47

  10. Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. In: Proceedings of the 4th international symposium on landslides, Toronto, Canada, vol 1, pp 307–324

  11. Bührlein M, Eliya N (1991) “Hill Station” und Zentraler Ort im Hochland der Insel Ceylon (Sri Lanka). Steiner Verlag, Stuttgart

    Google Scholar 

  12. Bui DT, Lofman O, Revhaug I, Dick O (2011) Landslide susceptibility analysis in the HoaBinh province of Vietnam using statistical index and logistic regression. Nat Hazards 59(3):1413–1444

    Google Scholar 

  13. Burrough PA, MacMillan RA, van Deursen W (1992) Fuzzy classification methods for determining land suitability from soil prole observations and topography. J Soil Sci 43:193–210

    Google Scholar 

  14. Caniani D, Pascale S, Sdao F, Sole A (2008) Neural networks and landslide susceptibility: a case study of the urban area of Potenza. Nat Hazards 45(1):55–72

    Google Scholar 

  15. Cardinali M, Reichenbach P, Guzzetti F, Ardizzone F, Antonini G et al (2002) A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Nat Hazards Earth Syst Sci (Copernicus Publications on behalf of the European Geosciences Union) 2(1/2):57–72

    Google Scholar 

  16. CastellanosAbella EA, Van Westen CJ (2008) Qualitative landslide susceptibility assessment by multicriteria analysis: a case study from San Antonio del Sur, Guantanamo, Cuba. Geomorphology 94:453–466

    Google Scholar 

  17. Census of India (2011) Registrar General & Census Commissioner, Ministry of Home Affairs, Government of India

  18. Chacón J, Irigaray C, Fernandez T, ElHamdouni R (2006) Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65(4):341–411. https://doi.org/10.1007/s10064-006-0064-z

    Article  Google Scholar 

  19. Chang DY (1996) Applications of the extent analysis method on fuzzy AHP. Eur J Oper Res 95(3):649–655. https://doi.org/10.1016/2f0377-2217(95)00300-2

    Article  Google Scholar 

  20. Chauhan S, Sharma M, Arora MK (2010) Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Landslides 7:411–423

    Google Scholar 

  21. Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 87:120–131

    Google Scholar 

  22. Constantin M, Martin BM, Jurchescu C, Vlaicu M (2011) Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci 63(2):397–406. https://doi.org/10.1007/2Fs12665-010-0724-y

    Article  Google Scholar 

  23. Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F et al (2013) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263

    Google Scholar 

  24. Dai FC, Lee CF (2002) Landslide characteristics and slope instability modelling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Google Scholar 

  25. Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87

    Google Scholar 

  26. Dunman TY, Can T, Gokceoglu C, Nefeslioglu HA (2005) Landslide susceptibility mapping of Cekmece area (Istanbul, Turkey) by conditional probability. Hydrol Earth Syst Sci Discuss 2:155–208

    Google Scholar 

  27. Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce a landslide susceptibility map of a landslide prone area (West Black Sea region, Turkey). Eng Geol 75:229–250

    Google Scholar 

  28. Espizua LE, Bengochea JD (2002) Landslide hazard and risk zonation mapping in the Río Grande Basin, Central Andes of Mendoza, Argentina. Mt Res Dev 22(2):177–185

    Google Scholar 

  29. Federici RP, Puccinelli A, Cantarelli E, Casarosa N, Avanzi GD, Falaschi F, Giannecchini R, Pochini A, Ribolini A, Bottai M, Salvati N, Testi C (2007) Multidisciplinary investigations in evaluating landslide susceptibility—an example in the Serchio River Valley (Italy). Quatern Int 171–172:52–63

    Google Scholar 

  30. Fernández T, Irigaray C, Hamdouni RE, Chacón J (2003) Methodology for landslide susceptibility mapping by means of a GIS. Application to the Contraviesa Area (Granada, Spain). Nat Hazards. https://doi.org/10.1023/B:NHAZ.0000007092.51910.3f

    Article  Google Scholar 

  31. Frattini P, Crosta G, Carrara A, Agliardi F (2008) Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 94(3–4):419–437

    Google Scholar 

  32. Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci 18:2161–2181. https://doi.org/10.5194/nhess-18-2161-2018

    Article  Google Scholar 

  33. Gomez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78(1–2):11–27

    Google Scholar 

  34. Gorservski PV, Jankowski P (2008) Discerning landslide susceptibility using rough sets. Comput Environ Urban Syst 32:53–65

    Google Scholar 

  35. Guinau M, Pallas R, Vilaplana JM (2005) A feasible methodology for landslide susceptibility assessment in developing countries: a case-study of NW Nicaragua after Hurricane Mitch. Eng Geol 80:316–327

    Google Scholar 

  36. Gupta P, Anbalagan R (1997) Slope stability of Tehri Dam Reservoir Area, India, using landslide hazard zonation (LHZ) mapping. Q J Eng Geol 30:27–36

    Google Scholar 

  37. Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng Geol 58(2):89–107

    Google Scholar 

  38. Guzzetti F, Cardinali M, Reichenbach P, Carrara A (2000) Comparing landslide maps: a case study in the upper Tiber River Basin, Central Italy. Environ Manag 25(3):247–363. https://doi.org/10.1007/s002679910020

    Article  Google Scholar 

  39. Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184

    Google Scholar 

  40. He S, Pan P, Dai L, Wang H, Liu J (2012) Application of kernel-based Fisher discriminant analysis to map landslide susceptibility in the Qinggan River delta, Three Gorges, China. Geomorphology 171–172:30–41. https://doi.org/10.1016/j.geomorph.2012.04.024

    Article  Google Scholar 

  41. Hewitt K, Burton I (1971) The hazardousness of a place: a regional ecology of damaging events. University of Toronto Department of Geography Research Publications, Volume 6. University of Toronto Press

  42. Hosmer DW, Lemeshow S (1989) Applied logistic regression. Wiley, New York

    Google Scholar 

  43. Hossmer DW, Lemenshow S (2000) Applied logistic regression, 2nd edn. Wiley, New York

    Google Scholar 

  44. https://www.dailypioneer.com/2015/state-editions/mussoorie-buildings-not-quake-safe.html

  45. Huang CC, Chu PY, Chiang YH (2008) A fuzzy AHP application in government-sponsored R&D project selection. Omega 36(6):1038–1052. https://doi.org/10.1016/2fj.omega.2006.05.003

    Article  Google Scholar 

  46. Jaiswal P, van Westen CJ, Jetten V (2010) Quantitative landslide hazard assessment along a transportation corridor in southern India. Eng Geol 116:236–250

    Google Scholar 

  47. Jelínek R, Hervás J, Wood M (2007) Risk Mapping of Landslides in New Member States. JRC Scientific and Technical reports. EUR 22950 EN-Joint Research Centre-Institute for the Protection and Security of the Citizen. Luxembourg

  48. Jenks FG (1967) The data model concept in statistical mapping. Int Yearb Cartogr 7:186–190

    Google Scholar 

  49. Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN blackbox, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85(3–4):347–366

    Google Scholar 

  50. Kennedy D (1996) The magic mountains: hill stations and the British Raj. University of California Press, Berkeley

    Google Scholar 

  51. Kim JC, Sun-Min L, Hyung-Sup J, Saro L (2017) Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea. Geocarto Int. https://doi.org/10.1080/10106049.2017.1323964

    Article  Google Scholar 

  52. Klein JP, Moeschberger ML (2003) Survival analysis-techniques for censored and truncated data. Springer, New York. https://doi.org/10.1007/b97377

    Google Scholar 

  53. Kurtener D, Badenko V (2001) GIS fuzzy algorithm for evaluation of attribute data quality. GIM Int 15(3):76–79

    Google Scholar 

  54. Lee S, Pradhan B (2006) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides (2007) 4:33–41. https://doi.org/10.1007/s10346-006-0047-y

    Article  Google Scholar 

  55. Lee S, Pradhan B (2007) Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4:33–41. https://doi.org/10.1007/2Fs10346-006-0047-y

    Article  Google Scholar 

  56. Lee S, Sambath T (2006) Landslide susceptibility mapping in the DamreiRomel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50(6):847–855. https://doi.org/10.1007/2Fs00254-006-0256-7

    Article  Google Scholar 

  57. Lee S, Yoon Y (2017) Risk mapping of landslide hazard on road network in Korea. Asian J Res 6(6):74–116

    Google Scholar 

  58. Lee S, Chwae U, Kyungduck M (2002) Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea. Geomorphology 46:149–162

    Google Scholar 

  59. Lee S, Ryu JH, Lee MJ, Won JS (2003) Landslide susceptibility analysis using artificial neural network at Boun, Korea. Environ Geol 44:820–833

    Google Scholar 

  60. Lee S, Ryu JH, Won JS, Park HJ (2004) Determination and application of the weights for landslide susceptibility mapping : using an artificial neural network. Eng Geol 71:289–302

    Google Scholar 

  61. Lee S, Choi J, Oh H (2009) Landslide susceptibility mapping using a neuro-fuzzy. Abstract presented at the American Geophysical Union, Fall Meeting 2009, abstract #NH53A-1075

  62. Lee S, Hwang J, Park I (2013) Application of data-driven evidential belief functions to landslide susceptibility mapping in Jinbu, Korea. CATENA 100:15–30

    Google Scholar 

  63. Lipovetsky S, Conklin WM (2002) Robust estimation of priorities in the AHP. Eur J Oper Res 137(1):110–122. https://doi.org/10.1016/2fS0377-2217(01)00071-6

    Article  Google Scholar 

  64. McBratney AB, Santos Mendonca ML, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52

    Google Scholar 

  65. McMaster R, McMaster S (2002) A history of twentieth-century American Academic cartography. Cartogr Geogr Inf Sci 29(3):312–315

    Google Scholar 

  66. Melchiorre C, Matteucci M, Azzoni A, Zanchi A (2008) Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 94:379–400

    Google Scholar 

  67. Michael-Leiba M, Baynes F, Scott G, Granger K (2003) Regional landslide risk to the Cairns community. Nat Hazards 30(2):233–249

    Google Scholar 

  68. Miyagi T, Prasad GB, Tanavud C, Potichan A, Hamasaki E (2004) Landslide risk evaluation and mapping-manual of aerial photo interpretation for landslide topography and risk management. Natl Res Inst Earth Sci Disaster Prev 2004:66

    Google Scholar 

  69. Mouchel (2011) Landslide Susceptibility Mapping: Literature Review and Findings. University of Stirling, Innovation Park, Stirling. Report is presented to Geological Survey of Ireland in respect of the Landslide Susceptibility Mapping Project

  70. Nefeslioglu HA, Gokceoglu C, Sonmez H (2008) An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Eng Geol 97:171–191

    Google Scholar 

  71. Nenhauser B, Terhorst B (2007) Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (S-W Germany). Geomorphology 86:12–24

    Google Scholar 

  72. Oh HJ, Pradhan B (2011) Application of a neuro-fuzzy model to landslide susceptibility mapping for shallow landslides in a tropical hilly area. Comput Geosci 37(9):1264–1276

    Google Scholar 

  73. Panchal S, Sangwan S, Usman M (2015) A review of techniques of landslide susceptibility mapping using GIS. Int J Eng Sci Res Technol 4(2):142–145

    Google Scholar 

  74. Petley DN, Hearn GJ, Hart A, Rosser NJ, Dunning SA, Oven K, Mitchell WA (2007) Trends in landslide occurrence in Nepal. Nat Hazards 43:23–44. https://doi.org/10.1007/s11069-006-9100-3

    Article  Google Scholar 

  75. Pourghasemi HR, Pradhan B, Gokceoglu C, DeylamiMoezzi K (2012) Landslide susceptibility mapping using a spatial multi criteria evaluation model at Haraz Watershed, Iran. In: Pradhan B, Buchroithner M (eds) Terrigenous mass movements. Springer, Berlin. https://doi.org/10.1007/978-3-642-25495-6_2

    Google Scholar 

  76. Pradhan B (2010a) Application of an advanced fuzzy logic model for landslide susceptibility analysis. Int J Comput Intell Syst 3(3):370–381

    Google Scholar 

  77. Pradhan B (2010b) Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens 38:301–320

    Google Scholar 

  78. Pradhan B, Buchroithner MF (2010) Comparison and validation of landslide susceptibility map susing an artificial neural network model for three test areas in Malaysia. Environ Eng Geosci 16(2):107–126

    Google Scholar 

  79. Pradhan B, Lee S (2010a) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60:1037–1054

    Google Scholar 

  80. Pradhan B, Lee S (2010b) Landslide susceptibility assessment and factor effect analysis: back propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw 25:747–759

    Google Scholar 

  81. Pradhan B, Lee S (2010c) Regional landslide susceptibility analysis using back propagation neural network model at Cameron Highland, Malaysia. Landslides 7(1):13–30

    Google Scholar 

  82. Pradhan B, Pirasteh S (2010) Comparison between prediction capabilities of neural network and fuzzy logic techniques for landslide susceptibility mapping. Disaster Adv 3(2):26–34

    Google Scholar 

  83. Pradhan B, Youssef AM (2010) Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arab J Geosci 3:319–326. https://doi.org/10.1007/s12517-009-0089-2

  84. Pradhan B, Lee S, Buchroithner MF (2010a) A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses. Comput Environ Urban Syst 34:216–235

    Google Scholar 

  85. Pradhan B, Youssef AM, Varathrajoo R (2010b) Approaches for delineating landslide hazard areas using different training sites in an advanced artificial neural networkmodel. Geospat Inf Sci 13(2):93–102. https://doi.org/10.1007/s11806-010-0236-7S

    Article  Google Scholar 

  86. Pradhan AMS, Kang H-S, Saro L, Yun-Tae K (2016) Spatial model integration for shallow landslide susceptibility and its runout using a GIS-based approach in Yongin, Korea. Geocarto Int. https://doi.org/10.1080/10106049.2016.1155658

    Article  Google Scholar 

  87. Ranst EV, Tang H (1996) Application of fuzzy logic to land suitability for rubber production in peninsular Thailand. Geoderma 70:1–19

    Google Scholar 

  88. Ray PKC, Lakhera RC (2004) Landslide Hazards in India. In: Proceedings of Asian Workshop on Regional Capacity Enhancement for Landslide Mitigation (RECLAIM), organized by Asian Disaster Preparedness Centre (ADPC), Bangkok and Norwegian Geo-technical Institute, Oslo, Bangkok

  89. Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180(2018):60–91. https://doi.org/10.1016/j.earscirev.2018.03.001

    Article  Google Scholar 

  90. Ruff M, Czurda K (2008) Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Voralberg, Austria). Geomorphology 94:314–324

    Google Scholar 

  91. Saaty TL (1980) The analytical hierarchy process. McGraw-Hill, New York

    Google Scholar 

  92. Saaty TL (2000) Decision making for leaders: the analytical hierarchy process for decisions in a complex world. RWS Publications, Pittsburgh

    Google Scholar 

  93. Saaty TL, Vargas LG (2001) Models, methods, concepts and applications of the analytic hierarchy process. Kluwer, Dordrecht

    Google Scholar 

  94. Schuster RL (1995) Socio-economic significance of landslides. In: Turner AK, Schuster RL (eds) Landslides, Investigation and Mitigation. Transportation Research Board Special Report 247. National Academy of Sciences, Washington DC, pp 12–35

    Google Scholar 

  95. Sezer EA, Pradhan B, Gokceoglu C (2011) Manifestation of an adaptive neuro fuzzy model on landslide susceptibility mapping: Klangvalley, Malaysia. Expert Syst Appl 38:8208–8219

    Google Scholar 

  96. Singh R, Umrao RK, Singh TN (2014) Stability evaluation of road-cut slopes in the Lesser Himalaya of Uttarakhand, India: conventional and numerical approaches. B Eng Geol Environ 73:845–857. https://doi.org/10.1007/s10064-013-0532-1,2014

    Article  Google Scholar 

  97. Smith K (1992) Environmental Hazards: Assessing Risk and Reducing Disaster. Routledge Physical Environment Series, 1st edn. Routledge, London

    Google Scholar 

  98. Smith WK (1996) Photogrammetric determination of slope movements on the Slumgullion landslide. In: Varnes D, Savage W (eds) The Slumgullion earth flow: a large-scale natural laboratory. U.S. Geological Survey Bulletin 2130. Washington, D.C, pp 57–60

  99. Sujatha RE, Rajamanickam GV (2014) Landslide hazard and risk mapping using the weighted linear combination model applied to the Tevankarai Stream Watershed, Kodaikkanal, India. Hum Ecol Risk Assess Int J. https://doi.org/10.1080/10807039.2014.920222

    Article  Google Scholar 

  100. Sujatha ER, Rajamanickam GV, Kumaravel P (2012) Landslide susceptibility analysis using probabilistic certainty factor approach: a case study on Tevankarai stream watershed, India. J Earth Syst Sci 121:1337–1350

    Google Scholar 

  101. Susana P, Ricardo AC, Garcia JLZ, Sérgio CO, Márcio S (2017) Landslide quantitative risk analysis of buildings at the municipal scale based on a rainfall triggering scenario. Geomat Nat Hazards Risk 8(2):624–648. https://doi.org/10.1080/19475705.2016.1250116

    Article  Google Scholar 

  102. Tangestani MH (2003) Landslide susceptibility mapping using the fuzzy gamma operation in a GIS, Kakan catchment area, Iran. Map India, Disaster Management Iran

  103. Tangestani MH (2009) A comparative study of Dempster–Shaferandfuzzy models for landslide susceptibility mapping using a GIS: an experience from Zagros Mountains, SW Iran. J Asian Earth Sci 35:66–73

    Google Scholar 

  104. Tazik E, Jahantab Z, Bakhtiari M, Rezaei A, Kazem Alavipanah S (2014) Landslide susceptibility mapping by combining the three methods Fuzzy Logic, Frequency Ratio and Analytical Hierarchy Process in Dozain basin. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W3:267–272. https://doi.org/10.5194/isprsarchives-XL-2-W3-267-2014

  105. Temesgen B, Mohammed MU, Korme T (2001) National hazard assessment using GIS and remote sensing methods, with particular reference to the landslides in the Wondogenet Area, Ethiopia. Phys Chem Earth 26:665–675

    Google Scholar 

  106. Thiery Y, Malet JP, Sterlacchini S, Puissant A, Moiquaire O (2007) Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology 92:38–59

    Google Scholar 

  107. TienBui D, Pradhan B, Lofman O, Revhaug I, Dick OB (2011) Landslide susceptibility mapping at HoaBinh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Comput Geosci 45:199–211. https://doi.org/10.1016/j.cageo.2011.10.031

    Article  Google Scholar 

  108. Trigila A, Iadanza C, Esposito C, Scarascia-Mugnozza G (2015) Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 249:119–136

    Google Scholar 

  109. vanWesten CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 2006(65):167–184. https://doi.org/10.1007/s10064-005-0023-0

    Article  Google Scholar 

  110. Vijith H, Madhu G (2008) Estimating potential landslide sites of an upland sub-watershed in Western Ghat’s of Kerala (India) through frequency ratio and GIS. Environ Geol 55:1397–1405. https://doi.org/10.1007/2Fs00254-007-1090-2

    Article  Google Scholar 

  111. Voogd H (1983) Multi-criteria evaluation for urban and regional planning. Pion Ltd, London

    Google Scholar 

  112. Wang YM, Elhag TM (2008) An adaptive neuro-fuzzy inference system for bridge risk assessment. Expert Syst Appl 34:3099–3106

    Google Scholar 

  113. Wang F, Hall GB, Subaryono (1990) Fuzzy information representation and processing in conventional GIS software: database design and application. Int J Geogr Inf Syst 4:261–283

    Google Scholar 

  114. Wang YM, Luo Y, Hua Z (2008) On the extent analysis method for fuzzy AHP and its applications. Eur J Oper Res 186(2):735–747. https://doi.org/10.1016/2fj.ejor.2007.01.050

    Article  Google Scholar 

  115. Yılmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Katlandslides (Tokat-Turkey). Comput Geosci 35(6):1125–1138

    Google Scholar 

  116. Yilmaz I (2010a) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci. https://doi.org/10.1007/s12665-009-0394-9

    Article  Google Scholar 

  117. Yilmaz I (2010b) The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability(CP)and artificial neural network (ANN). Environ Earth Sci 60:505–519

    Google Scholar 

  118. Yu CS (2002) A GP-AHP method for solving group decision-making fuzzy AHP problems. Comput Oper Res 29(14):1969–2001. https://doi.org/10.1016/2fs0305-0548(01)00068-5

    Article  Google Scholar 

  119. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Google Scholar 

  120. Zimmermann G (2017) From basic survival analytic theory to a non-standard application. Springer Spektrum, Berlin. https://doi.org/10.1007/978-3-658-17719-5

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge all Geography Honours Graduate Degree Students (Part-III, Session2013-14 batch) of Dr. Meghnad Saha College for their active support in recording field data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mukunda Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishra, M., Sarkar, T. A multistage hybrid model for landslide risk mapping: tested in and around Mussoorie in Uttarakhand state of India. Environ Earth Sci 79, 449 (2020). https://doi.org/10.1007/s12665-020-09180-3

Download citation

Keywords

  • Susceptibility
  • Analytic hierarchy process
  • Fuzzy logic
  • Binary logistic regression
  • Multi-criteria
  • Hill slope
  • NDVI
  • Stream power index
  • Topographic wetness index