Impact of urbanization and land surface temperature changes in a coastal town in Kerala, India

Abstract

Rapid urbanization and unscientific developments have resulted in large-scale degradation of the environment around major cities all over the world. The problem is acute in many tropical and sub-tropical Urban Local Bodies (ULBs) having high population density and are undergoing rapid economic developments. Lack of adequate studies to contain the ill-effects of developments is major challenge before the decision makers at different levels. In this paper, an attempt has been carried out to examine the spatio-temporal changes in urban growth and land surface temperature (LST) responses in a coastal city in SW India, the Thiruvananthapuram city (Kerala) that enjoys a tropical wet climate, as an example. Landsat imageries of 1988, 2000 and 2019 have been used to estimate the extent of urban growth and LST changes. The study revealed a marked decrease in vegetation cover (125–71 km2) and barren land (7–4 km2) in the area during 1988–2019. The built-up area showed a marked increase from 10 to 68 km2. It was noticed that the average LST has been increased from 26.5 °C to 28.1 °C during the study period. The study stresses the imminent need for strengthening the extent of green cover in the area and make developments more environment-friendly.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

(Source: Satellite Image)

Fig. 8
Fig. 9
Fig. 10
Fig.11

References

  1. Aguilar C, Zinnert JC, José M, Young DR (2012) NDVI as an indicator for changes in water availability to woody vegetation. Ecol Indic 23:290–300. https://doi.org/10.1016/j.ecolind.2012.04.008

    Article  Google Scholar 

  2. Arulbalaji P (2019) Analysis of land use/land cover changes using geospatial techniques in Salem district, Tamil Nadu. South India SN Appl Sci. https://doi.org/10.1007/s42452-019-0485-5

    Article  Google Scholar 

  3. Arulbalaji P, Gurugnanam B (2014a) Geospatial science for 16 years of variation in land use/land cover practice assessment around Salem district, south India. J Geosci 2:17–20. https://doi.org/10.12691/jgg-2-1-3

    Article  Google Scholar 

  4. Arulbalaji P, Gurugnanam B (2014b) Evaluating the normalized difference vegetation index using landsat data by ENVI in salem district, Tamilnadu, India. Int J Dev Res 4:1844–1846

    Google Scholar 

  5. Arya USU, Smitha AV, Reghunath R, Neena PT (2018) Land use change detection in Akkulam - Veli lake, Thiruvananthapuram over the last three decades - an analysis using Remote Sensing and GIS tools. IJRASET 6:542–548

    Google Scholar 

  6. Bo-cai G (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58:257–266. https://doi.org/10.1016/s0034-4257(96)00067-3

    Article  Google Scholar 

  7. Bounoua L, Zhang P, Mostovoy G et al (2015) Impact of urbanization on US surface climate. Environ Res Lett. https://doi.org/10.1088/1748-9326/10/8/084010

    Article  Google Scholar 

  8. Chayapong P, Dasananda S (2013) Urban heat island phenomenon in relation to land use/land cover in Bangkok metropolitan administration area introduction the study area resides within Bangkok metropolitan administration (bma) area. J Environ R 35:27–41

    Google Scholar 

  9. Chen D, Chen HW (2013) Using the Köppen classification to quantify climate variation and change: an example for 1901–2010. Environ Dev 6:69–79

    Article  Google Scholar 

  10. Choudhury D, Das K, Das A (2019) Assessment of land use land cover changes and its impact on variations of land surface temperature in Asansol-Durgapur development region. Egypt J Remote Sens Sp Sci 22:203–218. https://doi.org/10.1016/j.ejrs.2018.05.004

    Article  Google Scholar 

  11. Crum SM, Shiflett SA, Jenerette GD (2017) The influence of vegetation, mesoclimate and meteorology on urban atmospheric microclimates across a coastal to desert climate gradient. J Environ Manage 200:295–303. https://doi.org/10.1016/j.jenvman.2017.05.077

    Article  Google Scholar 

  12. Dembélé A, Ye X, Touré A (2018) Analysis of land surface temperature change based on MODIS data, case study: inner delta of Niger. Nat Hazards Earth Syst Sci Discuss. https://doi.org/10.5194/nhess-2018-208

    Article  Google Scholar 

  13. Fernandez Milan B, Creutzig F (2016) Municipal policies accelerated urban sprawl and public debts in Spain. Land Use Policy 54:103–115. https://doi.org/10.1016/j.landusepol.2016.01.009

    Article  Google Scholar 

  14. Feyisa GL, Meilby H, Fensholt R, Proud SR (2014) Remote sensing of environment automated water extraction index: a new technique for surface water mapping using Landsat imagery. Remote Sens Environ 140:23–35. https://doi.org/10.1016/j.rse.2013.08.029

    Article  Google Scholar 

  15. Fonseka HPU, Zhang H, Sun Y et al (2019) Urbanization and its impacts on land surface temperature in Colombo Metropolitan Area, Sri Lanka, from 1988 to 2016. Remote Sens 11:957

    Article  Google Scholar 

  16. Hassan Z, Shabbir R, Ahmad SS et al (2016) Dynamics of land use and land cover change (LULCC) using geospatial techniques: a case study of Islamabad Pakistan. Springerplus. https://doi.org/10.1186/s40064-016-2414-z

    Article  Google Scholar 

  17. Heiden U, Heldens W, Roessner S et al (2012) Urban structure type characterization using hyperspectral remote sensing and height information. Landsc Urban Plan 105:361–375. https://doi.org/10.1016/j.landurbplan.2012.01.001

    Article  Google Scholar 

  18. Kaplan G, Avdan U, Yigit Avdan Z (2018) Urban heat island analysis using the Landsat 8 satellite data: a case study in Skopje. Macedonia. https://doi.org/10.3390/ecrs-2-05171

    Article  Google Scholar 

  19. Kardinal Jusuf S, Wong NH, Hagen E et al (2007) The influence of land use on the urban heat island in Singapore. Habitat Int 31:232–242. https://doi.org/10.1016/j.habitatint.2007.02.006

    Article  Google Scholar 

  20. Mascarenhas A, Haase D, Ramos TB, Santos R (2019) Pathways of demographic and urban development and their effects on land take and ecosystem services: the case of Lisbon Metropolitan Area, Portugal. Land Use Policy 82:181–194. https://doi.org/10.1016/j.landusepol.2018.11.056

    Article  Google Scholar 

  21. Mathew A, Khandelwal S, Kaul N (2016) Spatial and temporal variations of urban heat island effect and the effect of percentage impervious surface area and elevation on land surface temperature: study of Chandigarh city, India. Sustain Cities Soc 26:264–277. https://doi.org/10.1016/j.scs.2016.06.018

    Article  Google Scholar 

  22. McFEETERS SK (1996) The use of the normalized difference water index (NDWI) in the delineation of open water features. Int J Remote Sens 17:1425–1432. https://doi.org/10.1080/01431169608948714

    Article  Google Scholar 

  23. McGrane SJ (2016) Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review. Hydrol Sci J 61:2295–2311. https://doi.org/10.1080/02626667.2015.1128084

    Article  Google Scholar 

  24. Meshesha TW, Tripathi SK, Khare D (2016) Analyses of land use and land cover change dynamics using GIS and remote sensing during 1984 and 2015 in the Beressa Watershed Northern Central Highland of Ethiopia. Model Earth Syst Environ 2:168. https://doi.org/10.1007/s40808-016-0233-4

    Article  Google Scholar 

  25. Mosammam HM, Nia JT, Khani H et al (2017) Monitoring land use change and measuring urban sprawl based on its spatial forms: the case of Qom city. Egypt J Remote Sens Sp Sci 20:103–116. https://doi.org/10.1016/j.ejrs.2016.08.002

    Article  Google Scholar 

  26. Mukherjee N, Siddique G, Basak A et al (2019) Climate change and livelihood vulnerability of the local population on Sagar Island, India. Chinese Geogr Sci 29:417–436. https://doi.org/10.1007/s11769-019-1042-2

    Article  Google Scholar 

  27. Mwangi PW, Karanja FN, Kamau PK (2018) Analysis of the relationship between Land surface temperature and vegetation and built-up indices in Upper-Hill, Nairobi. J Geosci Environ Prot 06:1–16. https://doi.org/10.4236/gep.2018.61001

    Article  Google Scholar 

  28. Naserikia M, Shamsabadi EA, Rafieian M, Filho WL (2019) The urban heat island in an urban context: a case study of Mashhad. Iran Int J Environ Res Public Health. https://doi.org/10.3390/ijerph16030313

    Article  Google Scholar 

  29. Pal S, Ziaul S (2017) Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt J Remote Sens Sp Sci 20:125–145. https://doi.org/10.1016/j.ejrs.2016.11.003

    Article  Google Scholar 

  30. Peng J, Jia J, Liu Y et al (2018) Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas. Remote Sens Environ 215:255–267. https://doi.org/10.1016/j.rse.2018.06.010

    Article  Google Scholar 

  31. Rasul A, Balzter H, Ibrahim G et al (2018) Applying built-up and bare-soil indices from Landsat 8 to cities in dry climates. Land 7:81. https://doi.org/10.3390/land7030081

    Article  Google Scholar 

  32. Rędzińska K, Szulczewska B (2019) Landscape in change as perceived by its residents: a case study of Wilanow West in Warsaw. Land Use Policy 85:259–270. https://doi.org/10.1016/j.landusepol.2019.04.001

    Article  Google Scholar 

  33. Reis S (2008) Analyzing land use/land cover changes using remote sensing and GIS in Rize, North-East Turkey. Sensors 8:6188–6202. https://doi.org/10.3390/s8106188

    Article  Google Scholar 

  34. Sajinkumar KS, Revathy A, Rani VR (2017) Hydrogeochemistry and spatio-temporal changes of a tropical coastal wetland system: Veli-Akkulam Lake, Thiruvananthapuram, India. Appl Water Sci 7:1521–1534. https://doi.org/10.1007/s13201-015-0333-8

    Article  Google Scholar 

  35. Sarp G, Ozcelik M (2016) Water body extraction and change detection using time series: a case study of Lake Burdur, Turkey. J Taibah Univ Sci 11:381–391. https://doi.org/10.1016/j.jtusci.2016.04.005

    Article  Google Scholar 

  36. Sheela AM, Letha J, Joseph S et al (2011) Trophic state index of a lake system using IRS (P6-LISS III) satellite imagery. Environ Monit Assess 177:575–592. https://doi.org/10.1007/s10661-010-1658-2

    Article  Google Scholar 

  37. Silva JS, da Silva RM, Santos CAG (2018) Spatiotemporal impact of land use/land cover changes on urban heat islands: a case study of Paço do Lumiar, Brazil. Build Environ 136:279–292. https://doi.org/10.1016/j.buildenv.2018.03.041

    Article  Google Scholar 

  38. Song C, Huang B, Ke L, Richards KS (2014) ISPRS journal of photogrammetry and remote sensing remote sensing of alpine lake water environment changes on the Tibetan plateau and surroundings : a review. ISPRS J Photogramm Remote Sens 92:26–37. https://doi.org/10.1016/j.isprsjprs.2014.03.001

    Article  Google Scholar 

  39. Srivastava PK, Majumdar TJ, Bhattacharya AK (2009) Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Adv Sp Res 43:1563–1574. https://doi.org/10.1016/j.asr.2009.01.023

    Article  Google Scholar 

  40. Sultana S, Satyanarayana ANV (2018) Urban heat island intensity during winter over metropolitan cities of India using remote-sensing techniques: impact of urbanization. Int J Remote Sens 39:6692–6730. https://doi.org/10.1080/01431161.2018.1466072

    Article  Google Scholar 

  41. Sun C, Wu Z, Lv Z, Cheng J (2010) Analysis of urbanization effect on land surface temperature, using sub-pixel technology. 2nd Int Conf Inf Eng Comput Sci Proc ICIECS 2010:2–5. https://doi.org/10.1109/ICIECS.2010.5678160

    Article  Google Scholar 

  42. Sun Q, Wu Z, Tan J (2012) The relationship between land surface temperature and land use/land cover in Guangzhou, China. Environ Earth Sci 65:1687–1694. https://doi.org/10.1007/s12665-011-1145-2

    Article  Google Scholar 

  43. Suribabu CR, Bhaskar J, Neelakantan TR (2012) Land use/cover change detection of Tiruchirapalli City, India, using integrated remote sensing and GIS tools. J Indian Soc Remote Sens 40:699–708. https://doi.org/10.1007/s12524-011-0196-x

    Article  Google Scholar 

  44. Swarnalatha K, Letha J, Ayoob S (2013) An investigation into the heavy metal burden of Akkulam-Veli Lake in south India. Environ Earth Sci 68:795–806. https://doi.org/10.1007/s12665-012-1780-2

    Article  Google Scholar 

  45. Tan KC, Lim HS, MatJafri MZ, Abdullah K (2010) Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environ Earth Sci 60:1509–1521. https://doi.org/10.1007/s12665-009-0286-z

    Article  Google Scholar 

  46. Tarawally M, Xu W, Hou W, Mushore TD (2018) Comparative analysis of responses of land surface temperature to long-term land use/cover changes between a coastal and Inland City: a case of Freetown and Bo Town in Sierra Leone. Remote Sens 10:1–18. https://doi.org/10.3390/rs10010112

    Article  Google Scholar 

  47. Tran DX, Pla F, Latorre-Carmona P et al (2017) Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J Photogramm Remote Sens 124:119–132. https://doi.org/10.1016/j.isprsjprs.2017.01.001

    Article  Google Scholar 

  48. Turok I, McGranahan G (2013) Urbanization and economic growth: the arguments and evidence for Africa and Asia. Environ Urban 25:465–482. https://doi.org/10.1177/0956247813490908

    Article  Google Scholar 

  49. United Nations (2018) World Urbanization Prospects 2018. https://population.un.org/wup/Publications/Files/WUP2018-Highlights.pdf

  50. Wong NH, Yu C (2005) Study of green areas and urban heat island in a tropical city. Habitat Int 29:547–558. https://doi.org/10.1016/j.habitatint.2004.04.008

    Article  Google Scholar 

  51. Wood EM, Pidgeon AM, Radeloff VC, Keuler NS (2012) Remote sensing of environment image texture as a remotely sensed measure of vegetation structure. Remote Sens Environ 121:516–526. https://doi.org/10.1016/j.rse.2012.01.003

    Article  Google Scholar 

  52. Xu D, Guo X, Li Z et al (2014) Remote sensing of environment measuring the dead component of mixed grassland with Landsat imagery. Remote Sens Environ 142:33–43. https://doi.org/10.1016/j.rse.2013.11.017

    Article  Google Scholar 

  53. Yanan L, Yuliang Q, Yue Z (2011) Dynamic monitoring and driving force analysis on rivers and lakes in Zhuhai city using remote sensing technologies. Proc Environ Sci 10:2677–2683. https://doi.org/10.1016/j.proenv.2011.09.416

    Article  Google Scholar 

  54. Yirsaw E, Wu W, Shi X et al (2017) Land use/land cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of China, the Su-Xi-Chang region. Sustain 9:1–17. https://doi.org/10.3390/su9071204

    Article  Google Scholar 

  55. Yuan F, Bauer ME (2007) Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ 106:375–386. https://doi.org/10.1016/j.rse.2006.09.003

    Article  Google Scholar 

  56. Yue W, Liu Y, Fan P (2013) Measuring urban sprawl and its drivers in large Chinese cities: the case of Hangzhou. Land Use Policy 31:358–370. https://doi.org/10.1016/j.landusepol.2012.07.018

    Article  Google Scholar 

  57. Zhang A, Jia G (2013) Remote sensing of environment monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens Environ 134:12–23. https://doi.org/10.1016/j.rse.2013.02.023

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr N. Purnachandra Rao, Director, National Centre for Earth Science Studies (NCESS) for his constant encouragements and support. The authors thank the National Aeronautics and Space Administration (NASA), The United States Geological Survey (USGS), and Google Earth for required data that are used for the present study. We thank the reviewers for their critical comments and suggestions which helped us immensely for improving the quality of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Arulbalaji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a Topical Collection in Environmental Earth Sciences on “GeosphereAnthroposphere Interlinked Dynamics: Geocomputing and New Technologies”, guest edited by Sebastiano Trevisani, Marco Cavalli, and Fabio Tosti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arulbalaji, P., Padmalal, D. & Maya, K. Impact of urbanization and land surface temperature changes in a coastal town in Kerala, India. Environ Earth Sci 79, 400 (2020). https://doi.org/10.1007/s12665-020-09120-1

Download citation

Keywords

  • Land use/land cover changes
  • Climate change
  • Urban heat Islands
  • Southwest India