Skip to main content
Log in

Geochemical suitability of Lower Eocene extra-siliceous limestone for cement making (Bizerte deposit-Extreme North of Tunisia)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The extra siliceous limestone sample of the Lower Eocene from the abandoned cement quarry part of the limestone deposit from the area of Bizerte (Extreme North East of Tunisia) has been investigated for its suitability for cement making. Petrological as well as X-ray diffraction pattern studies indicated that the limestone sample was crystalline and dominantly composed of calcite and quartz. They have variable silica and lime contents. Geochemical analysis results of 25 samples indicated that the limestone from the Bizerte deposit shows a wide range of variation in LOI (33–39 wt%), SiO2 (7–6 wt%), CaO (4–49 wt%) Al2O3 (2–4 wt%), and Fe2O3 (0.74–1.45 wt%). MgO, K2O, Na2O, and TiO2 are present in traces. CaO shows a strong positive correlation with LOI, whereas CaO and SiO2 show a negative correlation. The chemical composition of limestone confirms the mineralogical composition. The aim of this paper is to show the influence of high siliceous limestone component from Bizerte deposit on clinker parameters (silica modulus and lime saturation factor) in order to highlight their effect for the cement process making. In addition, to establish a predictionnal geochemical model in order to integrate and optimize this raw material estimated at 81,78,000 tons in cement manufacturing. The geochemical analysis by XRF of the limestone samples taken at different levels from the quarry proves their affluence in carbonate with a lime content of 46 wt% and the abundance of silica with a content of 12 wt%. Mineralogical analysis shows the predominance of calcite and quartz at the XRD diffraction patterns. The obtained results are used subsequently to establish geochemical maps of lime and silica allowing the orientation of the operational plan according to the geochemical quarry composition. The geochemical as well as mineralogical analyses show that the integration of the extra siliceous limestone in the raw powder composition permits the filling in of the defect of silica in limestone exploitation by preserving the quality of the produced cement in accordance with the Tunisian and European standard requirements. This study explains then the importance of geochemical assessment of limestone for cement manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Alonso MC, García Calvo JL, Sánchez M, Fernández Á (2012) Ternary mixes with high mineral additions contents and corrosion related properties. Mater Corros 63:1078–1086. https://doi.org/10.1002/maco.201206654

    Article  Google Scholar 

  • Aloui T, Ounis A, Chaabani F (2008) Maastrichtian limestones of Feriana mountain used in white cement production (central west Tunisia). J Am Soc 91(11):3704–3713

    Google Scholar 

  • Ben Abdelmalek J (1993) Etudes des matières premières de la Cimenterie de Bizerte et calcul énergétique. Diplôme d’ingénieur en géologie: Matériaux et Ressources minéraux. Faculté des sciences de Tunis

  • Biely A, Lajmi T, Rouvier H (1971) Les unités allochtones du Pays de Bizerte (Tunisie septentrionale). C R Acad Sci Fr t 273:2052–2055

    Google Scholar 

  • Bogue RH (1929) Calculation of the compounds in Portland cement. Ind Eng Chem 1:192–197. https://doi.org/10.1021/ac50068a006

    Article  Google Scholar 

  • Bouazza N, El Mrihi A, Maâte A (2016) Geochemical assessment of limestone for cement manufacturing. Proced Technol 22:211–218

    Article  Google Scholar 

  • Bouillin JP (1986) Le bassin maghrébin: une ancienne limite entre l’Europe et l’Afrique à l’Ouest des Alpes. Bull Soc Géol Fr 8:547–558

    Article  Google Scholar 

  • Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie centrale. Ann Mines Géol Tunis 18:345

    Google Scholar 

  • Caire A (1971) Chaînes alpines de la Méditerranée centrale (Algérie et Tunisie septentrionale, Sicile, Calabre et Apennin méridional. Tectonique de l’Afr (Sci de la Terre) 6:61–89

    Google Scholar 

  • Coralis (2005) Conseil Réalisation assistance Logicielle en informatique scientifique: expertise des gisements de matières premières. Rapport interne de la société Les ciments de Bizerte

  • Crampon N (1971) Etude géologique de la bordure des Mogod, du pays de Bizerte et de Nord des Hédil. Thèse d’Etat, Nancy, p 522

    Google Scholar 

  • Elkhadiri I, Diouri A, Boukhari A, Aride J, Puertas F (2002) Mechanical behaviour of various mortars made by combined fly ash and limestone in Moroccan Portland cement. Cem Concr Res 32:1597–1603. https://doi.org/10.1016/S0008-8846(02)00834-7

    Article  Google Scholar 

  • Glasser PF (2003) The burning of Portland cement. Lea’s chemistry of cement and concrete, 4th edn. Elsevier, Amsterdam, pp 195–240

    Google Scholar 

  • Hoshino S, Yamada K, Hirao H (2006) XRD/Rietveld analysis of the hydration and strength development of slag and limestone blended cement. J Adv Concr Technol 4:357–367. https://doi.org/10.3151/jact.4.357

    Article  Google Scholar 

  • Ingram K, Daugherty K (1991) A review of limestone additions to Portland cement and concrete. Cem Concr Compos 13:165–170

    Article  Google Scholar 

  • Khanous A (2014) Optimisation du taux de calcaire pour la production d’un nouveau ciment blanc 42.5 N. Diplôme de master professionnel en Chimie des Matériaux Industriels. Université des sciences et de la technologie d’Oran. Faculté de Chimie, Département de Génie des Matériaux

  • Khurshid A (2008) Chemical study of limestone and clay for cement manufacturing in Darukhula, Nizampur District, Nowshera, North West Frontier Province (NWFP), Pakistan. Chin J Geochem 27:242–248

    Article  Google Scholar 

  • Kovacs JC, Dasnias P, Barande S, Le Bloch F (2001) Carrières et zones humides: Le patrimoine écologique des zones humides issues de l’exploitation des carrières. Ecosphère, Charte UNPG, MNHN, CNRS, Paris, 5 volumes

  • Lawrence D (2003) The production of low-energy cement. Lea’s chemistry of cement and concrete, 4th edn. Elsevier, Amsterdam, pp 421–470

    Google Scholar 

  • Locher FW (1986) Low-energy clinker. In: Proceedings of the 8th international congress on the chemistry of cement, Rio de Janeiro, Principal paper: sub theme 1.3, vol 1, pp 57–67

  • Meier R, Anderson J, Verryn S (2012) Industrial X-ray diffraction analysis of building materials. Rev Mineral Geochem 74:147–165

    Article  Google Scholar 

  • Melki F (1997) Tectonique de l’extrémité Nord—Ouest de la Tunisie (Bizerte—Menzel Bourguiba—Mateur). Evolution tectonique de blocs structuraux du Crétacé supérieur au Quaternaire. Thèse. Doc. Géol. Faculté des Sciences de Tunis, p 213

  • Monnin Y, Dégrugilliers P, Bulteel D, Garcia-Diaz E (2006) Petrography study of two siliceous limestones submitted to alkali-silica reaction. Cem Concr Res 36(8):1460–1466. https://doi.org/10.1016/j.cemconres.2006.03.025

    Article  Google Scholar 

  • Nayak BD, Mallik PK (2002) Characterisation of Portland cement clinker manufactured by down draft sintering and vertical shaft kiln processes. Adv Cem Res 14:1–7

    Article  Google Scholar 

  • Norme Tunisienne NT 47.01 (2007) Ciment partie 1: composition, spécifications et critères de conformité des ciments courants

  • Ozguner AM (2014) Prospection of Portland cement raw material: a case study in the Marmara region of Turkey. J Afr Earth Sci 97:230–243

    Article  Google Scholar 

  • Pilliere H (2002) L’analyse par diffraction des Rayons X sort du laboratoire et se met en ligne sur le process. Mesures p 746

  • Rahhal V, Talero R (2008) Calorimetry of Portland cement with metakaolins, quartz and gypsum additions. J Therm Anal Calorim 91:825–834. https://doi.org/10.1007/s10973-006-8250-6

    Article  Google Scholar 

  • Rao DS, Vijayakumar TV, Prabhakar S et al (2009) Beneficiation of a siliceous limestone sample. Aufbereitungs Tech Miner Process 50:36–47

    Google Scholar 

  • Rao DS, Vijayakumar TV, Prabhakar S, Bhaskar Raju G (2011) Geochemical assessment of a siliceous limestone sample for cement making. Chin J Geochem 30:033–039

    Article  Google Scholar 

  • Rouvier H (1977) Géologie de l’Extrême Nord Tunisien: Tectonique et Paléogéographies superposées à l’extrémité orientale de la chaîne Nord-maghrébine. Thèse d’Etat, Paris VI, p 703

    Google Scholar 

  • Roy DM (1999) Alkali-activated cements opportunities and challenges. Cem Concr Res 29:249–254. https://doi.org/10.1016/S0008-8846(98)00093-3

    Article  Google Scholar 

  • Rtce (2011) Réseau Technologique des Cimenteries pour l’Environnement: Le guide environnemental du secteur cimentier en Tunisie

  • Schneider M, Romer M, Tschudin M, Bolio S (2011) Celitement: a sustainable prospect for the cement industry. Cem Concr Res 41:642–650

    Article  Google Scholar 

  • Shah MT, Fayez A, Ali L (2007) Chemical study of the raw material in Gandahar range, District Haripur, NWFP, for the Portland cement manufacturing. J Chem Soc Pak 29(2):103–119

    Google Scholar 

  • Stemmermann U, Schweike K, Garbev G, Beuchle H (2010) Sustainable cement production—present and future. Cem Int 8(5):52–66

    Google Scholar 

  • Talbi F, Melki F, Ben Ismail-Lattrache K, Alouani R, Tlig S (2008) Le Numidien de la Tunisie septentrionale: données stratigraphiques et interprétation géodynamique. Estud Geol 64(1):31–44

    Article  Google Scholar 

  • Torrenti JM, Bendboudjema F (2005) Mechanical threshold of cementitious materials at early age. Mater Struct 38:299–304. https://doi.org/10.1007/BF02479294

    Article  Google Scholar 

  • Triki I, Hentati I, Trabelsi N, Zairi M (2014) Evaluation de techniques d’interpolation spatiale à l’aide de l’extension Geostatistical Analyst d’ArcGIS: Cas du système aquifère phréatique de Sfax. Ecole nationale d’ingénieurs de Sfax, Sfax

    Google Scholar 

  • Voglis N, Kakali G, Chaniotakis E, Tsivilis S (2005) Portland-limestone cement, their properties and hydration compared to those of other composite cement. Cem Concr Comp 27:191–196. https://doi.org/10.1016/j.cemconcomp.2004.02.006

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge contributions from the engineers and technicians of the Laboratory of Bizerte Cements Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imed Ben Salah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezza, S., Ben M’Barek Jemaï, M., Ben Salah, I. et al. Geochemical suitability of Lower Eocene extra-siliceous limestone for cement making (Bizerte deposit-Extreme North of Tunisia). Environ Earth Sci 79, 219 (2020). https://doi.org/10.1007/s12665-020-08930-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-020-08930-7

Keywords

Navigation