Skip to main content
Log in

Thermodynamic and spectroscopic investigation of Nb(V) and Pa(V) sorption on colloidal silica

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Sorption study of Nb(V) and Pa(V) was carried out on silica in the pH range of 1–12. Presence of humic acids has positive effects on sorption in acidic pH and has negative effects in basic pH which is more severe. The sorption mechanism was evaluated using classical as well as spectroscopic techniques. Ionic strength study reveals outer sphere complexation in acidic region, whereas strong possibility of inner sphere surface complexation in neutral and basic regions. Thermodynamic data further reinforce the findings of salinity studies. Extended X-ray Absorption Fine Structure (EXAFS) analysis of Nb(V) sorbed silica at different pH clearly showed that in acidic medium, Nb is not coordinated with any Si atom, whole coordination number is satisfied by O atom and water molecules whereas in neutral and basic medium, Nb is coordinated with 1–2 Si atoms at 3.44 Å and 3.5 Å via O bridge. The spectroscopic analysis endorses the claim by salinity and thermodynamic data, and concludes the physisorption in acidic medium and chemisorption in neutral as well as basic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adéla K, Tobias R, Sachsa S, Drebertb J, Bernhard G (2008) Structural characterization of U(VI) surface complexes on kaolinite in the presence of humic acid using EXAFS spectroscopy. J Colloid Interface Sci 319:40–47

    Google Scholar 

  • Ahmet S, Mustafa T (2008) Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum) Equilibrium, kinetic and thermodynamic studies. J Hazard Mater 160(34):9–355

    Google Scholar 

  • Alhassanieh O, Abdul-Hadi A, Ghafar M, Aba A (1999) Separation of Th, U, Pa, Ra and Ac from natural uranium and thorium series. Appl Radiat Isot 51:493–498

    Google Scholar 

  • Andersson K, Torstenfelt B, Rydberg J (1979) Leakage of Niobium-94 from an underground rock repository. SKB Tech Rep 79–26. https://www.iaea.org/inis/collection/NCLCollectionStore/_Public/11/561/11561931.pdf. Accessed on 30 Nov 2018

  • Ardizzone S, Formaro L, Lyklema J (1982) Ionic strength effects on cation sorption to oxides: macroscopic observations and their significance in microscopic interpretation. J Electroanal Chem 133:149–155

    Google Scholar 

  • Aria Y, Moran PB, Homeyman BD, Davis JA (2007) In situ spectroscopic evidence for Np(V)-carbonate innersphere and outer sphere ternary surface complexes on hematite surfaces. Environ Sci Technol 41(11):3940–3944

    Google Scholar 

  • Asakura K, Iwasawa Y (1991) Synthesis, characterization, and catalytic properties of SiO2 attached One-atomic-layer Niobium oxide catalysts. J Phys Chem 95:1711–1716

    Google Scholar 

  • Basu S, Nayak C, Yadav AK, Agrawal A, Poswal AK, Bhattacharyya D, Jha SN, Sahoo NK (2014) A comprehensive facility for EXAFS measurements at the INDUS-2 synchrotron source at RRCAT, Indore. India. J Phys Conf Ser 493:12032

    Google Scholar 

  • Buckau G (2005) Humic substances in performance assessment of nuclear waste disposal: actinide and iodine migration in the far field. FZKA 7070, Karlsruhe, Germany

  • Charles D, Prime D (1983) Desorption behaviour of artificial radionuclides sorbed on to estuarine silt: (I) caesium-137 and ruthenium-106, (II) zirconium-95 and niobium-95. Environ Pollut B5:273–295

    Google Scholar 

  • Choppin GR (1983) Solution chemistry of the actinides. Radiochim Acta 32:43–53

    Google Scholar 

  • Chopra M, Nair RN, Sunny F, Sharma DN (2015) Migration of radionuclides from a high-level radioactive waste repository in deep geological formations. Environ Earth Sci 73(4):1757–1768

    Google Scholar 

  • Chowdhury SR, Yanful EK, Pratt AR (2011) Arsenic removal from aqueous solutions by mixed magnetite–maghemite nanoparticles. Environ Earth Sci 64:411–423

    Google Scholar 

  • Chung KH, Klenze R, Park KK, Paviet-Hartmann P, Kim JI (1998) A Study of the surface sorption process of Cm(III) on silica by time-resolved laser fluorescence spectroscopy. Radiochim Acta 82:215–219

    Google Scholar 

  • Combes JN, Chisholem-Brause CJ, Brown GE, Parks GA (1992) EXAFS spectroscopic study of Np(V) sorption at the α-FeOOH/water interface. Environ Sci Technol 26(2):376–381

    Google Scholar 

  • Crosnier MP, Guyomard D, Verbaere A, Piffard Y, Tournoux M (1992) The potassium niobyl cyclotetrasilicate K2(NbO)2Si4O12. J. Solid State Chem 98:128–132

    Google Scholar 

  • Daniel GS, Donald LS (1999) The use of XAFS to distinguish between inner and outer-sphere lead adsorption complexes on montmorillonite. J Colloid Interface Sci 216:257–269

    Google Scholar 

  • Dierking S, Amayri S, Reich T (2008) Actinide sorption studies using the isotopes 237Np and 239Np. J Nucl Sci Technol S6:133–137

    Google Scholar 

  • El-Bayaa AA, Badawy NA, Khalik EA (2009) Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral. J Hazard Mater 170:1204–1209

    Google Scholar 

  • Ellison SLR, Williams A (2012) Quantifying uncertainty in analytical measurements. Eurachem/CITAC Guide CG 4, QUAM, 3rd edn

  • Fourest B, Perrone J, Tarapcik P, Giffaut E (2004) The hydrolysis of protactinium (V) studied by capillary diffusion. J Solut Chem 33(8):957–973

    Google Scholar 

  • Geckeis H, Rabung T (2002) Solid-water interface reactions of polyvalent metal ions at iron oxide-hydroxide surfaces. Marcel Dekker, Inc., New York

    Google Scholar 

  • Geckeis H, Lützenkirchen J, Robert P, Thomas R, Moritz S (2013) Mineral-water interface reactions of actinides. Chem Rev 113:1016–1062

    Google Scholar 

  • Gibalo IM (1968) Analytical chemistry of niobium and tantalum. Israel program for scientific translations, Jerusalem

    Google Scholar 

  • Goldberg DC, Dicker G, Worcester SA (1972) Niobium and Niobium alloys in nuclear power. Nucl Engg Des 22:95–123

    Google Scholar 

  • Hayes KF, Papelis C, Leckie JO (1988) Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces. J Colloid Interface Sci 125:717–726. https://doi.org/10.1016/0021-9797(88)90039-2

    Article  Google Scholar 

  • Hisao Y, Tsunehiro T, Tomoko Y, Takuzo F, Satohiro Y (1996) Control of the structure of niobium oxide species on silica by the equilibrium adsorption method. Catal Today 28:79–89

    Google Scholar 

  • Howe-Grant M (1996) Kirk-Othmer encyclopedia of chemical technology, vol-17, 4th edn. Wiley, New York

    Google Scholar 

  • Hsu TC (2009) Experimental assessment of adsorption of Cu2+ and Ni2+ from aqueous solution by oyster shell powder. J Hazard Mater 171:995–1000

    Google Scholar 

  • IAEA TECDOC-1450 (2005) Thorium fuel cycle: potential benefits and challenges. IAEA, Vienna

    Google Scholar 

  • Jianhong X, Mengchang H, Chunye L (2010) Adsorption of antimony(V) on kaolinite as a function of pH, ionic strength and humic acid. Environ Earth Sci 60:715–722. https://doi.org/10.1007/s12665-009-0209-z

    Article  Google Scholar 

  • Kalmykov SN, Schäfer T, Claret F, Perminova IV, Petrova AB, Shcherbina NS, Teterin YA (2008) Sorption of neptunium onto goethite in the presence of humic acids with different hydroquinone group content. Radiochim Acta 96:685–690

    Google Scholar 

  • Kelly SD, Hesterberg D, Ravel B (2008) Analysis of soils and minerals using X-ray absorption spectroscopy, Chapter-14, USA, pp 387–463

    Google Scholar 

  • Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL (1999) Migration of plutonium at Nevada test site. Nature 397:56–59

    Google Scholar 

  • Konigsberger DC, Prince R (1988) X-Ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York

    Google Scholar 

  • Lee WC, Kim SO, Ranville J, Yun ST, Choi SH (2014) Sequestration of arsenate from aqueous solution using 2-line ferrihydrite: equilibria, kinetics, and X-ray absorption spectroscopic analysis. Environ Earth Sci 71(8):3307–3318

    Google Scholar 

  • Lehto J, Hou X (2010) Chemistry and analysis of radionuclides-laboratory techniques and methodology. Wiley-VCH, Germany

    Google Scholar 

  • Lister DH (1992) Coolant technology for water cooled reactors. IAEA-TECHDOC-667, vol. 2, IAEA, Vienna

  • McCarthy JF, Zachara JM (1989) Subsurface transport of contaminants. Environ Sci Technol 23:496–502

    Google Scholar 

  • Miller AW, Wang Y (2012) Radionuclide interaction with clays in dilute and heavily compacted systems: a critical review. Environ Sci Technol 46(4):1981–1994

    Google Scholar 

  • Monroy-Guzman F (2010) Anion exchange behaviour of Zr, Hf, Nb, Ta and Pa as homologues of Rf and Db in fluoride medium. J Mex Chem Soc 54(1):24–33

    Google Scholar 

  • Muller K, Foerstendorf H, Brendler V, Bernhard G (2009) Sorption of Np(V) onto TiO2, SiO2, and ZnO: an in situ ATR FT-IR spectroscopic study. Environ Sci Technol 43(60):7665–7670

    Google Scholar 

  • Newville M, Ravel B, Haskel B, Rehr JJ, Stern EA, Yacoby Y (1995) Analysis of multiple scattering XAFS data using theoretical standards. Phys B 208(209):154–156

    Google Scholar 

  • Nie Z, Nicolas F, Frank H, Tim P, Chunli L, Lützenkirchen J (2017) Adsorption of selenium and strontium on goethite: EXAFS study and surface complexation modeling of the ternary systems. Environ Sci Technol 51:3751–3758

    Google Scholar 

  • Nikulina AV (2003) Metal materials for the elements of nuclear reactors. Met Sci Heat Treat 45:7–8

    Google Scholar 

  • Omar A, Charlotte H, Mohammed A, Laïla BA, Nicolas M (2010) Sorption of Cr(VI) onto natural iron and aluminum (oxy)hydroxides: Effects of pH, ionic strength and initial concentration. J Hazard Mater 174:616–622

    Google Scholar 

  • Organization for economic cooperation and development (OECD 2015) Introduction of Thorium in the nuclear fuel cycle: Short-to long-term considerations. NEA No. 7224. https://www.oecd-nea.org/science/pubs/2015/7224-thorium.pdf. Accessed on 03 Dec 2018

  • Ozcan A, Ozcan AS, Tunali S, Akar T, Kiran I (2005) Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of Cu(II) ions onto seeds of Capsicum annuum. J Hazard Mater B124:200–208

    Google Scholar 

  • Pal’shin ES, Myasoedov BF, Davydov AV (1970) Analytical chemistry of protactinium. Ann Arbor-Humphery Science Publishers, London

    Google Scholar 

  • Righetto L, Bidoglio G, Azimonti G, Bellobono IR (1991) Competitive actinide interactions in colloidal humic acid–mineral oxide systems. Environ Sci Technol 25:1913–1917

    Google Scholar 

  • Samadfam M, Nitisa Y, Sato S, Ohashi H (1996) Complexation thermodynamics of Sr(II) and humic Acid. Radiochim Acta 73:211–216

    Google Scholar 

  • Schmidt M, Eng PJ, Stubbs JE, Fenter P, Soderholm L (2011) A new x-ray interface and surface scattering environmental cell design for in situ studies of radioactive and atmosphere-sensitive samples. Rev Sci Instrum 82:075105

    Google Scholar 

  • Shuping Y, Haiyi M (2014) Chunmiao Zheng, Guocheng Ren, Xueling Hu, A field-scale long-term study on radionuclide transport through weathered granites at a site in southern China. Environ Earth Sci 72(11):4427–4439

    Google Scholar 

  • Skoog DA, West DM, Holler FJ, Crouch SR (2010) Fundamentals of analytical chemistry. India edition (8th), p 128

  • Smith JM (1981) Chemical engineering kinetics, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Steinberg EP (1961) the radiochemistry of niobium and tantalum. Clearing house for federal scientific and technical information. NAS-NS 3039, USA

  • Stevenson FJ (1982) Humus chemistry: genesis, composition, reactions. Wiley, New York

    Google Scholar 

  • Szekeres M, Jo ́zsef T, Imre D (2002) Specific surface area of stoeber silica determined by various experimental methods. Langmuir 18:2678–2685

    Google Scholar 

  • IAEA TECDOC 1401(2004) Quantifying uncertainty in nuclear analytical measurements. IAEA, Vienna

  • Tochiyama O, Endo S, Inoue Y (1995) Sorption of Neptunium(V) on various iron oxides and hydrous iron oxides. Radiochim Acta 68:105–111

    Google Scholar 

  • Tsunehiro T, Tomoko Y, Hisao Y, Hirofumi A, Takuzo F, Satohiro Y, Jih-Mirn J, Wachs IE (1996) XAFS study of niobium oxide on alumina. Catal Today 28:7l–78

    Google Scholar 

  • Unl N, Ersoz M (2006) Adsorption characteristics of heavy metal ions onto a low cost bio-polymeric sorbent from aqueous solutions. J Hazard Mater B136:272–280

    Google Scholar 

  • Venema P, Hiemstra T, van Riemsdijk WH (1996) Multisite adsorption of cadmium on goethite. J Colloid Interface Sci 183:515–527

    Google Scholar 

  • Wubiao Z, Zhengjie L, Lei C, Yunhui D (2011) Sorption of uranium(VI) on Na-attapulgite as a function of contact time, solid content, pH, ionic strength, temperature and humic acid. J Radioanl Nucl Chem 289(3):781–788

    Google Scholar 

  • Xin Y, Shubing Y, Shitong Y, Jun H, Xiaoli T, Xiangke W (2011) Effect of pH, ionic strength and temperature on sorption of Pb(II) on NKF-6 zeolite studied by batch technique. Chem Eng J 168:86–93

    Google Scholar 

  • Yang S, Sheng G, Tan X, Hu J, Du J, Montavon G, Wang X (2011) Determination of Ni(II) uptake mechanisms on mordenite surfaces: a combined macroscopic and microscopic approach. Geochim Cosmochim Acta 75:6520–6534

    Google Scholar 

Download references

Acknowledgements

Authors thank Dr. H Pal, Associate Director, Chemistry Group (A) and Head, Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India for his support. Authors also thank Dr. R. K. Singhal, Dr. Bhupesh B. Kalekar, of ACD, BARC and Dr. Rajini Antony P., Chemistry Division, BARC for their help during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Swain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, M., Yadav, A.K., Devi, P.S.R. et al. Thermodynamic and spectroscopic investigation of Nb(V) and Pa(V) sorption on colloidal silica. Environ Earth Sci 79, 32 (2020). https://doi.org/10.1007/s12665-019-8781-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8781-3

Keywords

Navigation