Skip to main content

Advertisement

Log in

Groundwater systems in bare and covered karst aquifers: evidence from tracer tests, hydrochemistry, and groundwater ages

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The east Guilin region contains a karst dominated hydrological system along the Lijiang River. The two main topographic characteristics of the basin are peak cluster depression and peak forest. Despite the fact that these areas represent adjacent units, they have different groundwater movement patterns. This study describes the groundwater and solute movement in the different hydrogeological sub-regions via several techniques. Our results indicated that the topographic boundary between the peak cluster depression and the peak forest is clear. However, a transition zone exists between these topographic zones, and it can be determined in terms of groundwater movement. We employed several methods that are widely considered to be effective. Tracer tests were conducted in the transition zone, hydrochemistry techniques were used in the peak forest, and groundwater age dating based on CFCs was employed throughout the study area. The main conduits could be found in the transition zone, but the groundwater flow was much slower in the transition zone than in the mountain peak cluster area. Minor conduits also accounted for a high proportion of the total flow in the transition zone. The solute migration within the plain, which was determined by analyzing the nitrates, was controlled by mixing and distance effects. The maximum nitrate concentration was limited at the local scale. The nitrate concentration gradient at the regional scale was not related to the groundwater movement, indicating that the groundwater recharged in a dispersed manner and discharged at discrete locations along the river. The age dating revealed that the groundwater was older in the plain than in the bare mountain zone. This was due to the strong mixing of young and old water, which was the result of the characteristics of the karst media in the aquifer. Our investigation of the groundwater system in a bare/covered karst aquifer provides data for decision-making in effective groundwater management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Faulkner J, Hu BX, Kish S, Hua F (2009) Laboratory analog and numerical study of groundwater flow and solute transport in a karst aquifer with conduit and matrix domains. J Contam Hydrol 110(1–2):34–44

    Article  Google Scholar 

  • Ford DC, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, New York

    Book  Google Scholar 

  • Geyer T, Birk S, Reimann T, Dörfliger N, Sauter M (2013) Differentiated characterization of karst aquifers: some contributions. Carbonates Evaporites 28(1–2):41–46

    Article  Google Scholar 

  • Goldscheider N, Drew D (2007) Methods in karst hydrogeology. Taylor & Francis, London

    Google Scholar 

  • Guo F, Jiang GH, Pei JG, Zhang C (2002) Assessment on the water qualities of major subterranean rivers in Guangxi and their changing trend. Carsologica Sin 21(3):195–201

    Google Scholar 

  • Guo F, Jiang GH, Yuan DX, Polk J (2013) Evolution of major environmental geological problems in karst areas of Southwestern China. Environ Earth Sci 69:2427–2435

    Article  Google Scholar 

  • Guo F, Wang WK, Jiang GH, Ma ZJ (2014) Contaminant transport behavior in a karst subterranean river and its capacity of self-purification: a case study of Lihu, Guangxi. Adv Water Sci 25(3):414–419

    Google Scholar 

  • Happell JD, Opsahl S, Top Z, Chanton JP (2006) Apparent CFC and 3H/3He age differences in water from Floridan Aquifer springs. J Hydrol 319:410–426

    Article  Google Scholar 

  • Hinsby K, Edmunds WM, Loosli HH, Manzano M, Melo M, Barbecot F (2001) The modern water interface: recognition, protection and development-advance of modern waters in European aquifer systems. In: Edmunds WM, Milne CJ (eds) Palaeowaters in coastal Europe: evolution of groundwater since the Late Pleistocene, vol 189. Geological Society, London, pp 271–288

    Google Scholar 

  • Hinsby K, Højberg AL, Engesgaard P, Jensen KH, Larsen F, Plummer L, Busenberg E (2007) Transport and degradation of chlorofluorocarbons (CFCs) in the pyritic Rabis Creek aquifer, Denmark. Water Resour Res 43(10):W10423

    Article  Google Scholar 

  • Höhener P, Duwig C, Pasteris G, Kaufmann K, Dakhel N, Harms H (2003) Biodegradation of petroleum hydrocarbon vapors: laboratory studies on rates and kinetics in unsaturated alluvial sand. J Contam Hydrol 66(1–2):93–115

    Article  Google Scholar 

  • Huebsch M, Fenton O, Horan B, Hennessy D, Richards KG, Jordan P, Goldscheider N, Butscher C, Blum P (2014) Mobilisation or dilution? Nitrate response of karst springs to high rainfall events. Hydrol Earth Syst Sci 11(4):216–226

    Article  Google Scholar 

  • Jiang GH, Guo F, Polk SJ, Kang ZQ, Wu JC (2015a) Delineating vulnerability of karst aquifers using hydrochemical tracers in Southwestern China. Environ Earth Sci 74:1015–1027

    Article  Google Scholar 

  • Jiang GH, Guo F, Yu S (2015b) Chemographs of karst water system and its new application in hydrogeological survey. J Jilin Univ Earth Sci Ed 45(3):899–907

    Google Scholar 

  • Jiang GH, Guo F, Tang QJ, Li X, Zeng XR (2016) Application of tracer test techniques in hydrogeological survey in karst area. J Nanjing Univ (Nat Sci) 52(3):503–511

    Google Scholar 

  • Jurgens BC, Böhlke JK, Eberts SM (2012) TracerLPM (version 1): An excel workbook for interpreting groundwater age distributions from environmental tracer data. US Geol Surv techniques methods Rep 4-F3

  • Katz BG, Böhlke JK, Hornsby HD (2001) Timescales for nitrate contamination of spring waters, Northern Florida, USA. Chem Geol 179:167–186

    Article  Google Scholar 

  • Kaufmann G, Braun J (2000) Karst aquifer evolution in fractured, porous rocks. Water Resour Res 36:1381–1391

    Article  Google Scholar 

  • Land L, Huff GF (2010) Multi-tracer investigation of groundwater residence time in a karstic aquifer: bitter Lake national Wildlife Refuge, New Mexico, USA. Hydrogeol J 18:455–472

    Article  Google Scholar 

  • Land L, Timmons S (2016) Evaluation of groundwater residence time in a high mountain aquifer system (Sacramento Mountains, USA): insights gained from use of multiple environmental tracers. Hydrogeol J 24:787–804

    Article  Google Scholar 

  • Li XQ, Zhou AG, Liu CF, Cai HS (2007) SF6 age of karst water in Guilin. Carsologica Sin 26(3):207–211

    Google Scholar 

  • Long AJ, Putnam LD (2006) Translating CFC-based piston ages into probability density functions of ground-water age in karst. J Hydrol 330(3–4):735–747

    Article  Google Scholar 

  • Long A, Sawyer J, Putnam L (2008) Environmental tracers as indicators of karst conduits in groundwater in South Dakota, USA. Hydrogeol J 16:263–280

    Article  Google Scholar 

  • Millero FJ (1986) The thermodynamics and kinetics of the hydrogen sulfide system in natural waters. Mar Chem 18(2–4):121–147

    Article  Google Scholar 

  • Morales T, Angulo B, Uriarte JA, Olazar M, Arandes JM, Antiguedad I (2017) Solute transport characterization in karst aquifers by tracer injection tests for a sustainable water resource management. J Hydrol 547:269–279

    Article  Google Scholar 

  • Plummer LN, Busenberg E, Böhlke JK, Nelms DL, Michel RL, Schlosser P (2001) Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, USA: a multi-tracer approach. Chem Geol 179(1–4):93–111

    Article  Google Scholar 

  • Rose S, Long A (1988a) Monitoring dissolved oxygen in ground water: some basic considerations. Ground Water Monit Rev 8:93–97

    Article  Google Scholar 

  • Rose S, Long A (1988b) Monitoring dissolved oxygen in ground water: some basic considerations. Ground Water Monit Rem 8(1):93–97

    Article  Google Scholar 

  • Thayalakumaran T, Bristow KL, Charlesworth PB, Fass T (2008) Geochemical conditions in groundwater systems: implications for the attenuation of agricultural nitrate. Agric Water Manag 95(2):103–115

    Article  Google Scholar 

  • Yuan DX, Drogue C, Dai AD, Lao WK, Cai WT, Bidaux P, Razack M (1990) Hydrology of the karst aquifer at the experimental site of Guilin in southern China. J Hydrol 115(1–4):285–296

    Google Scholar 

  • Yuan DX, Zhu DH, Weng JT et al (1991) Karst of China. Geologic Publishing House, Beijing

    Google Scholar 

  • Yuan DX, Dai AD, Cai WT et al (1996) Karst water system of a peak cluster catchment in South China’s bare karst region and its mathematic model. Guangxi Normal University Publishing House, Guilin

    Google Scholar 

  • Zhu DH (1982) Evolution of peak cluster-depression in Guilin area and morphometric measurement. Carsologica Sin 2:127

    Google Scholar 

  • Zoellmann K, Kinzelbach W, Fulda C (2001) Environmental tracer transport (H3 and SF6) in the saturated and unsaturated zones and its use in nitrate pollution management. J Hydrol 240(3–4):187–205

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (41772269) and the Key Research and Development Program of Guangxi (AB18221093). The authors would like to thank Dr. Han Zhiwei for his help with the laboratory analyses. We would like to thank the reviewers who read the first draft of this paper for their constructive comments. We would also like to thank LetPub (www.letpub.com) for providing linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, G., Guo, F. & Tang, C. Groundwater systems in bare and covered karst aquifers: evidence from tracer tests, hydrochemistry, and groundwater ages. Environ Earth Sci 78, 608 (2019). https://doi.org/10.1007/s12665-019-8622-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8622-4

Keywords

Navigation