Skip to main content

Advertisement

Log in

Punctuated ASM strengthening in late Heinrich Stadial from speleothem records, southern China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The dynamical adjustment process (DAP) is a requisite for climate system to arrange for a new equilibrium state. To evaluate the detailed structure of DAP during Heinrich Stadial (HS), high-resolution speleothem-based Asian summer monsoon (ASM) variability was reconstructed, separately covering HSs 5 to 1. In these calcite δ18O records, a gradual increase of ASM intensity is evident in each mid-HS, followed by a centennial-scale ASM stability lasting on average 590 years during late HS. At this time, δ18O values decrease by 1%, about 50% of the total HS, compared with maximum values in early HS. This structure of monsoonal HS in speleothem records is not reflected in temperature variations at the Greenland, but is well mirrored in middle- to low latitudes within the northern hemisphere, and even southern oceanic records. It suggests that southern and low-latitude climate conditions are likely important for the termination of HS. Thus, a DAP of about 400–600 years is a precondition for the ASM sub-system to prepare for a new equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Image from the website https://www.esrl.noaa.gov/)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson RF, Ali S, Bradtmiller LI, Nielsen SHH, Fleisher MQ, Anderson BE, Burckle LH (2009) Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323:1443–1448

    Article  Google Scholar 

  • Bard E, Rostek F, Turon JL, Gendreau S (2000) Hydrological impact of Heinrich events in the subtropical northeast Atlantic. Science 289:1321–1324

    Article  Google Scholar 

  • Baumgartner M, Schilt A, Eicher O, Schmitt J, Schwander J, Spahni R, Fischer H, Stocker TF (2012) High-resolution interpolar difference of atmospheric methane around the last glacial maximum. Biogeosciences 9:3961–3977

    Article  Google Scholar 

  • Bereiter B, Shackleton S, Baggenstos D, Kawamura K, Severinghaus J (2018) Mean global ocean temperatures during the last glacial transition. Nature 553:39–44

    Article  Google Scholar 

  • Broecker WS, McGee D, Adams KD, Cheng H, Edwards RL, Oviatt CG, Quade J (2009) A great basin-wide dry episode during the first half of the mysterious interval? Quat Sci Rev 28:2557–2563

    Article  Google Scholar 

  • Chappellaz J, Stowasser C, Blunier T, Baslev-Clausen D, Brook EJ, Dallmayr R, Faïn X, Lee JE, Mitchell LE, Pascual O, Romanini D, Rosen J, Schüpbach S (2013) High-resolution glacial and deglacial record of atmospheric methane by continuous-flow and laser spectrometer analysis along the NEEM ice core. Clim Past 9:2579–2593

    Article  Google Scholar 

  • Chen ST, Wang YJ, Cheng H, Edwards RL, Wang XF, Kong XG, Liu DB (2016) Strong coupling of Asian monsoon and Antarctic climates on sub-orbital timescales. Sci Rep 6:32995. https://doi.org/10.1038/srep32995

    Article  Google Scholar 

  • Cheng H, Sinha A, Wang XF, Cruz FC, Edwards RL (2012) The global paleomonsoon as seen through speleothem records from Asia and the Americas. Clim Dyn. https://doi.org/10.1007/s00382-012-1363-7

    Article  Google Scholar 

  • Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325:710–714

    Article  Google Scholar 

  • Clark PU, Shakun JD, Baker PA, Bartlein PJ, Brewer S, Brook E, Carlson AE, Cheng H, Kaufman DS, Liu ZY, Marchitto TM, Mix AC, Morrill C, Otto-Bliesner BL, Pahnke K, Russell JM, Whitlock C, Adkins JF, Blois JL, Clark J, Colman SM, Curry WB, Flower BP, He F, Johnson TC, Lynch-Stieglitz J, Markgraf V, McManus J, Mitrovica JX, Moerno PI, Williams JW (2012) Global climate evolution during the last deglaciation. Proc Natl Acad Sci USA 109:1134–1142

    Article  Google Scholar 

  • Denniston RF, Ummenhofer CC, Wanamaker AD Jr, Lachniet MS, Villarini G, Asmerom Y, Polyak VJ, Passaro KJ, Cugley J, Woods D, Humphreys WF (2016) Expansion and contraction of the Indo–Pacific tropical rain belt over the last three millennia. Sci Rep. https://doi.org/10.1038/srep34485

    Article  Google Scholar 

  • Denton GH, Alley RB, Comer GC, Broecker WS (2005) The role of seasonality in abrupt climate change. Quat Sci Rev 24:1159–1182

    Article  Google Scholar 

  • Deplazes G, Lückge A, Peterson LC, Timmermann A, Hamann Y, Hughen KA, Röhl U, Laj C, Cane MA, Sigman DM, Haug GH (2013) Links between tropical rainfall and North Atlantic climate during the last glacial period. Nat Geosci 6:213–217

    Article  Google Scholar 

  • Dorale JA, Liu ZH (2009) Limitations of hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. J Cave Karst Stud 71:73–80

    Google Scholar 

  • Duan FC, Liu DB, Cheng H, Wang XF, Wang YJ, Kong XG, Chen ST (2014) A high-resolution monsoon record of millennial-scale oscillations during late MIS 3 from Wulu Cave, south–west China. J Quat Sci 29:83–90

    Article  Google Scholar 

  • Fairchild IJ, Smith CL, Baker A, Fuller L, Spötl C, Mattey D, McDermott F (2006) Modification and preservation of environmental signals in speleothems. Earth-Sci Rev 75:105–153

    Article  Google Scholar 

  • Hemming SR (2004) Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev Geophys 42(1):RG1005. https://doi.org/10.1029/2003rg000128

    Article  Google Scholar 

  • Hendy CH (1971) The isotopic geochemistry of speleothems-I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochim Cosmochim Acta 35:801–824

    Article  Google Scholar 

  • Hodell DA, Nicholl JA, Bontognali TRR, Danino S, Dorador J, Dowdeswell JA, Einsle J, Kuhlmann H, Martrat B, Mleneck-Vautravers MJ, Rodríguez-Tovar FJ, Röhl U (2017) Anatomy of Heinrich layer 1 and its role in the last deglaciation. Paleoceanography 32:284–303

    Article  Google Scholar 

  • IAEA/WMO (2011) Global network of isotopes in precipitation. The GNIP database. http://isohis.iaea.org. Accessed 20 Dec 2011

  • Kindler P, Guillevic M, Baumgartner M, Schwander J, Landais A, Leuenberger M (2014) Temperature reconstruction from 10 to 120 kyr b2 k from the NGRIP ice core. Clim Past 10:887–902

    Article  Google Scholar 

  • Knorr G, Lohmann G (2003) Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Science 424:532–536

    Google Scholar 

  • Lachniet MS (2009) Climatic and environmental controls on speleothem oxygen-isotope values. Quat Sci Rev 28:412–423

    Article  Google Scholar 

  • Landais A, Masson-Delmotte V, Stenni B, Selmo E, Roche DM, Jouzel J, Lambert F, Guillevic M, Bazin L, Arzel O, Vinther B, Gkinis V, Popp T (2015) A review of the bipolar see-saw from synchronized and high resolution ice core water stable isotope records from Greenland and east Antarctica. Quat Sci Rev 114:18–32

    Article  Google Scholar 

  • Levermann A, Schewe J, Petoukhov V, Hermann H (2009) Basic mechanism for abrupt monsoon transitions. Proc Natl Acad Sci USA 106:20572–20577

    Article  Google Scholar 

  • Liu DB, Wang YJ, Cheng H, Edwards RL, Kong XG, Chen ST, Liu SS (2018) Contrasting patterns in abrupt Asian summer monsoon changes in the last glacial period and the Holocene. Paleoceanogr Palaeoclimatol 33:214–226

    Article  Google Scholar 

  • Marcott SA, Clark PU, Padman L, Klinkhammer GP, Springer SR, Liu ZY, Otto-Bliesner BL, Carlson AE, Ungerer A, Padman J, He F, Cheng J, Schmittner A (2011) Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc Natl Acad Sci USA 108:13415–13419

    Article  Google Scholar 

  • Markle BR, Steig EJ, Buizert C, Schoenemann SW, Bitz CM, Fudge TJ, Pedro JB, Ding QH, Jones TR, White JWC, Sowers T (2017) Global atmospheric teleconnections during Dansgaard–Oeschger events. Nat Geosci 10:36–40

    Article  Google Scholar 

  • Martrat B, Jimenez-Amat P, Zahn R, Grimalt JO (2014) Similarities and dissimilarities between the last two deglaciations and interglaciations in the North Atlantic region. Quat Sci Rev 99:122–134

    Article  Google Scholar 

  • McDermott F (2004) Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quat Sci Rev 23:901–918

    Article  Google Scholar 

  • Oppo DW, Curry WB, McManus JF (2015) What do benthic δ13C and δ18O data tell us about Atlantic circulation during Heinrich Stadial 1? Paleoceanography 30:353–368

    Article  Google Scholar 

  • Pausata FSR, Battisti DS, Nisancioglu KH, Bitz CM (2011) Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nat Geosci 4:474–480

    Article  Google Scholar 

  • Praetorius SK, Mix AC (2014) Synchronization of North Pacific and Greenland climates preceded abrupt deglacial warming. Science 345:444–448

    Article  Google Scholar 

  • Rasmussen SO, Seierstad IK, Andersen KK, Bigler M, Dahl-Jensen D, Johnsen SJ (2008) Synchronization of the NGRIP, GRIP, and GISP2 ice cores across MIS 2 and palaeoclimatic implications. Quat Sci Rev 27:18–28

    Article  Google Scholar 

  • Rodríguez-Sanz L, Mortyn PG, Herguera JC, Zahn R (2013) Hydrographic changes in the tropcial and extrotropical Pacific during the last deglaciation. Paleoceanography 28:529–538

    Article  Google Scholar 

  • Samartin S, Heiri O, Lotter AF, Tinner W (2012) Climate warming and vegetation response after Heinrich event 1 (16 700–16 000 cal yr BP) in Europe south of the Alps. Clim Past 8:1913–1927

    Article  Google Scholar 

  • Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Pietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59

    Article  Google Scholar 

  • Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical convergence zone. Nature 513:45–53

    Article  Google Scholar 

  • Shao QF, Pons-Branchu E, Zhu QP, Wang W, Valladas H, Fontugne M (2017) High precision U/Th dating of the rock paintings at Mt. Huashan, Guangxi, southern China. Quat Res 88:1–33

    Article  Google Scholar 

  • Siani G, Michel E, De Pol-Holz R, DeVries T, Lamy F, Carel M, Isguder G, Dewilde F, Lourantou A (2013) Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation. Nat Commun 4:2758. https://doi.org/10.1038/ncomms3758

    Article  Google Scholar 

  • Stager JC, Ryves DB, Chase BM, Pausata FSR (2011) Catastrophic drought in the Afro–Asian monsoon region during Heinrich event 1. Science 331:1299–1302

    Article  Google Scholar 

  • Stríkis NM, Chiessi CM, Cruz FW, Vuille M, Cheng H, de Souza Barreto EA, Mollenhauer G, Kasten S, Karmann I, Edwards RL, Bernal JP, dos Reis Sales H (2015) Timing and structure of Mega-SACZ events during Heinrich Stadial 1. Geophys Res Lett. https://doi.org/10.1002/2015GL064048

    Article  Google Scholar 

  • Svensson A, Andersen KK, Bigler M, Clausen HB, Dahl-Jensen D, Davies SM, Johnsen SJ, Muscheler R, Parrenin F, Rasmussen SO, Röthlisberger R, Seierstad I, Steffensen JP, Vinther BM (2008) A 60 000 year Greenland stratigraphic ice core chronology. Clim Past 4:47–57

    Article  Google Scholar 

  • Toucanne S, Soulet G, Freslon N, Jacinto RS, Dennielou B, Zaragosi S, Eynaud F, Bourillet J-F, Bayon G (2015) Millennial-scale fluctuations of the European ice sheet at the end of the last glacial, and their potential impact on global climate. Quat Sci Rev 123:113–133

    Article  Google Scholar 

  • van Nes EH, Scheffer M (2007) Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am Nat 169:738–747

    Article  Google Scholar 

  • WAIS Divide Project Members (2013) Onset of deglacial warming in west Antarctica driven by local orbital forcing. Nature 500:440–444

    Article  Google Scholar 

  • Wang YJ, Cheng H, Edwards RL, An ZS, Wu JY, Shen C-C, Dorale JA (2001) A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave. China Sci 294:2345–2348

    Google Scholar 

  • Weber ME, Clark PU, Kuhn G, Timmermann A, Sprenk D, Gladstone R, Zhang X, Lohmann G, Meniver L, Chikamoto MO, Friedrich T, Ohlwein C (2014) Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation. Nature 510:134–138

    Article  Google Scholar 

  • Xie RF, Marcantonio F, Schmidt MW (2012) Deglacial variability of Antarctic intermediate water penetration into the North Atlantic from authigenic neodymium isotope ratios. Paleoceanography 27:PA3221. https://doi.org/10.1029/2012pa002337

    Article  Google Scholar 

  • Zhang HB, Griffiths ML, Huang JH, Cai YJ, Wang CF, Zhang F, Cheng H, Ning YF, Hu CY, Xie SC (2016) Antarctic link with east Asian summer monsoon variability during the Heinrich Stadial-Bølling interstadial transition. Earth Planet Sci Lett 453:243–251

    Article  Google Scholar 

  • Zhao K, Wang YJ, Edwards RL, Cheng H, Liu DB (2010) High-resolution stalagmite δ18O records of Asian monsoon changes in central and southern China spanning the MIS 3/2 transition. Earth Planet Sci Lett 298:191–198

    Article  Google Scholar 

  • Zickfeld K, Knopf B, Petoukhov V, Schellnhuber HJ (2005) Is the Indian summer monsoon stable against global change? Geophys Res Lett 32:L15707. https://doi.org/10.1029/2005GL022771

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to two anonymous reviewers for their critical and instructive comments on an early version of this manuscript. This work was jointly supported by grants from the National Key R&D Program of China (No. 2016YFA0600401) and the National Nature Science Foundation of China (No. 41672161), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) (164320H116), the Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, and the Key Laboratory of Virtual Geographic Environments (Nanjing Normal University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianbing Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 710 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Liu, S., Liu, D. et al. Punctuated ASM strengthening in late Heinrich Stadial from speleothem records, southern China. Environ Earth Sci 78, 545 (2019). https://doi.org/10.1007/s12665-019-8559-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8559-7

Keywords

Navigation