Advertisement

Environmental Earth Sciences

, 78:533 | Cite as

Evaluation of the impact of lithium exploitation at the C57 mine (Gonçalo, Portugal) on water, soil and air quality

  • Pedro M. S. M. RodriguesEmail author
  • Ana Maria M. C. Antão
  • Ricardo Rodrigues
Original Article
  • 70 Downloads

Abstract

Concerns for the environment and sustainability are a priority to modern societies and one of the reasons for the emergence of movements against mining exploration. To avoid the opposition of local populations to mining activity, especially open-pit mining, there is a need to proceed with both best practices and technical knowledge that involve the local population and also carry out systematic environmental monitoring. The aim of this study is to evaluate the potential environmental impacts of C57 lithium mine exploration in the village of Gonçalo, district of Guarda, Portugal, on water, soil and atmospheric air quality. Determining the concentration of cations, anions, pH and conductivity for water and soil quality evaluation was performed by atomic absorption spectroscopy, ion chromatography and potentiometric methods. For the evaluation of atmospheric air quality, beta radiation absorption, chemiluminescence, UV absorption photometric and infrared radiation methods were used. The results lead to the conclusion that there is no evidence of soil and water quality degradation due to mine exploration. However, there is a perception of the existence of environmental impact on air quality, especially on nitrogen dioxide and particulate matter (PM1, PM2.5 and PM10), although the emissions of air pollutants are below the limits established by Portuguese legislation.

Keywords

Lithium Mining exploitation Water Soil Atmospheric air Quality 

Notes

Acknowledgements

The authors would like to acknowledge the financial supported of Project number 023720 (AAC/02/SAICT/2016)—A geologia como base da qualidade de vida. A sustentabilidade do lítio na povoação de GonçaloGuarda. Project co-financed by Lisboa 2020, Centro 2020, Portugal 2020 da EU (FEDER) (CENTRO-01-0145-FEDER-023720) and by national funds from the Fundação para a Ciência e a Tecnologia (FCT). The authors would also like to thank Samuel Walter Best, at the Instituto Politécnico da Guarda, for his assistance in the linguistic correction of this paper.

References

  1. Almeida C (2003) Estudo do filão aplitopegmatítico da mina da Bajoca, Almendra. Contribuição científico-tecnológica. Tese de Mestrado, Universidade do Porto, PortoGoogle Scholar
  2. Almeida C (2007) Valorization of pegmatite deposits in environmental conditioned areas. In: Granitic pegmatites: the state of the art—international symposium, 06th–12th May, PortoGoogle Scholar
  3. Almeida C, Mendonça JJL, Jesus MR, Gomes AJ (2000) Sistemas aquíferos de Portugal Continental. Centro Geologia Universidade de lisboa, INAGGoogle Scholar
  4. American Public Health Association (1988) Standard methods for the examination of water and wastewater. 20º edition. Washington. ISBN-13: 978-0875532356Google Scholar
  5. Antão A (2004) Comportamento geotécnico do granito da Guarda relacionado com a sua alteração. Tese de Doutoramento, Universidade de Coimbra, CoimbraGoogle Scholar
  6. Charoy B, Noronha F (1996) Multistage growth of a rare-element, volatile-rich microgranite at Argemela (Portugal). J Petrol 37:73–94CrossRefGoogle Scholar
  7. Charoy B, Lhote F, Dusausoy Y, Noronha F (1992) The crystal chemistry of spodumene in some granitic aplite-pegmatite of Nothern Portugal. Can Mineral 30:639–651Google Scholar
  8. Costa I, Massard G, Agarwal A (2010) Waste management policies for industrial symbiosis development: case studies in European countries. J Clean Prod 18:815–822CrossRefGoogle Scholar
  9. EN (2012a) 14211:2012: Ambient air–—Standard method for the measurement of the concentration of nitrogen dioxide and nitrogen monoxide by chemiluminescenceGoogle Scholar
  10. EN (2012b) 14265:2012: Ambient air—Standard method for the measurement of the concentration of ozone by ultraviolet photometryGoogle Scholar
  11. Farinha Ramos J (1998) Mineralizações de metais raros de Seixo Amarelo—Gonçalo. Contribuições para o seu conhecimento. Dissertation, Universidade de LisboaGoogle Scholar
  12. Farinha Ramos J (2007) Locality No. 5, Seixo-Amarelo—Gonçalo. Rare element aplite-pegmatite field. In: Lima A, Roda-Robles E (eds), Granitic Pegmatites: the state of the art. Field Trip Guidebook, FCUP, PortoGoogle Scholar
  13. Farinha Ramos J (2010) Aplitopegmatitos com mineralizações de metais raros de Seixo Amarelo-Gonçalo: o recurso geológico. In: Cotelo Neiva JM, Ribeiro A, Victor L, Noronha F, Ramalho M (eds), Ciências Geológicas: Ensino, Investigação e sua história, Vol II, Cap I, pp 121–130Google Scholar
  14. Farinha Ramos J, Noronha F (1995) Condições de deposição da fase litinífera principal no campo filoniano aplitopegmatítico de Seixo Amarelo- Gonçalo. Mem Mus Labor Miner Geol 4:599–604Google Scholar
  15. Farinha RJ, Ribeiro A, Barriga FJAS (1994) Mineralizações de metais raros de Seixo Amarelo—Gonçalo (Breve Nota Introdutória). Boletim de Minas, Instituto Geológico e Mineiro 31(2):101–115Google Scholar
  16. Fendorf SE (1995) Surface reactions of chromium in soils and waters. Geoderma 67:55–71CrossRefGoogle Scholar
  17. Freitas M, Carolino A, Guedes A, Noronha F (2015) P–T conditions of subsolidus modifications on rare metal enriched pegmatites. An example from Central Portugal. In: Proceedings of SGA, mineral resources in a sustainable world 2, pp 457–460, NancyGoogle Scholar
  18. ISO (1993) 11465:1993: soil quality—determination of dry matter and water content on a mass basis—Gravimetric method. ISO, GenèveGoogle Scholar
  19. ISO (1994) 11265:1994: soil quality—determination of the specific electrical conductivity. ISO, GenèveGoogle Scholar
  20. ISO (1995) 11466:1995: soil quality—extraction of trace elements soluble in aqua regia. ISO, GenèveGoogle Scholar
  21. ISO (1998) 11047:1998: soil quality—determination of cadmium, chromium, cobalt, copper, lead, manganese, nickel and zinc—flame and electrothermal atomic absorption spectrometric methods. ISO, GenèveGoogle Scholar
  22. ISO (2000) 10473:2000: ambient air—measurement of the mass of particulate matter on a filter medium—beta-ray absorption method. ISO, GenèveGoogle Scholar
  23. ISO (2005) 10390:2005: soil quality—determination of pH. ISO, GenevaGoogle Scholar
  24. Machete I (2015) Quimismo de Águas Portuguesas para Consumo e Potenciais Benefícios para a Saúde Humana. Tese de Mestrado, Instituto Superior Técnico, PortugalGoogle Scholar
  25. Martins T, Lima A, Noronha F (2007) Locality No. 1—an overview of the Barroso-Alvão Aplite-Pegmatite Field. Memórias Nº 9—Granitic Pegmatites: The State of the Art—Field Trip Guidebook. Edited by Alexandre Lima and Encarnación Roda Robles. PortoGoogle Scholar
  26. Mendes E, Ferreira Gomes LM, Condesso de Melo MT (2008) Contributo para a caracterização hidrogeológica das águas subterrâneas do maciço granítico da Serra da Estrela. Comum Serv Geol Technol 95:61–71Google Scholar
  27. Patrício J, Costa I, Niza S (2015) Urban material cycle closing e assessment of industrial waste management in Lisbon region. J Clean Product 106:389–399.  https://doi.org/10.1016/j.jclepro.2014.08.069 CrossRefGoogle Scholar
  28. Pereira AJSC, Pereira MD, Neves LJPF, Azevedo JMM, Campos ABA (2015) Evaluation of groundwater quality based on radiological and hydrochemical data from two uraniferous regions of western Iberia: Nisa (Portugal) and Ciudad Rodrigo (Spain). Environ Earth Sci 73:2717–2731.  https://doi.org/10.1007/s12665-014-3500-6 CrossRefGoogle Scholar
  29. Roda-Robles E, Pesquera A, Gil-Crespo P, Vieira R, Lima A, Garate-Olave I, Martins T, Torres-Ruiz J (2016) Geology and mineralogy of the Li mineralization in the Central Iberian Zone (Spain and Portugal). Mineral Mag 80(1):103–126CrossRefGoogle Scholar
  30. Sant’Ovaia H, Jaques L, Noronha F, Bobos I (2006) Caracterização petrofísica da episienitização no granito da Guarda—VII Congresso Nacional de Geologia—5th–7th July, Évora, PortugalGoogle Scholar
  31. Sequeira EM, Silva JMV (1988) Material originário. Sua importância nas propriedades dos solos do Noroeste de Portugal. Geonovas 10:73–78Google Scholar
  32. Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753CrossRefGoogle Scholar
  33. Silva PJABA (2014) Mineralogia, petrologia e geoquímica de granitos e filões aplito-pegmatiticos da região de Guarda-Sabugal. Dissertation, Universidade de Trás-os-Montes e Alto DouroGoogle Scholar
  34. UNWTO (2017) UNWTO annual report 2016. World Tourism Organization. http://media.unwto.org/publication/unwto-annual-report-2016. Accessed 24 Sept 2018

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Technology and ManagementGuarda Polytechnic InstituteGuardaPortugal

Personalised recommendations