Advertisement

Morphometric properties of dolines in Matarsko podolje, SW Slovenia

  • Timotej VerbovšekEmail author
  • Laura Gabor
Original Article
  • 62 Downloads

Abstract

Matarsko podolje, in SW Slovenia, is a karstic surface with many dolines, which appear between the flysch-composed Brkini hills in the NE and Mt. Slavnik in the SW. We have analyzed dolines to find the morphometric parameters of the depth, area, volume, and circularity index and also calculated the doline density and pitting index. All parameters were also calculated separately for individual lithological units to explain the variations of the calculated values among these groups. Morphometry was performed in GIS environment on a 1 × 1 m digital elevation model with bare earth obtained by lidar. The results show a high density of dolines (94 dolines/km2) and also a high pitting index (Rp = 8.27) compared to other studies. There are some significant differences between the measured values in individual lithologies, as the depths, areas, and volumes are largest in dolomitic beds (other beds include various types of limestones and carbonate breccia). The median values of depth, area, and volume are 2.98 m, 541 m2, and 690 m3. The circularity index is also lowest in dolomite beds and Kozina limestones; however, the differences are not so pronounced as for areas and volumes. Dolines’ longer axes are parallel to the directions of major structural elements; however, more detailed mapping should be done to confirm the influence of faults and fracture zones on the doline geometry.

Keywords

Karst Morphometry GIS Slovenia 

Notes

Acknowledgements

The authors would like to thank Prof. France Šušteršič for constructive comments during the preparation of the manuscript.

References

  1. Basso A, Bruno E, Parise M, Pepe M (2013) Morphometric analysis of sinkholes in a karst coastal area of southern Apulia (Italy). Environ Earth Sci 70:2545–2559.  https://doi.org/10.1007/s12665-013-2297-z CrossRefGoogle Scholar
  2. Bauer C (2015) Analysis of dolines using multiple methods applied to airborne laser scanning data. Geomorphology 250:78–88.  https://doi.org/10.1016/j.geomorph.2015.08.015 CrossRefGoogle Scholar
  3. Benac Č, Juračić M, Matičec D, Ružić I, Pikelj K (2013) Fluviokarst and classical karst: examples from the Dinarics (Krk Island, Northern Adriatic, Croatia). Geomorphology 184:64–73.  https://doi.org/10.1016/j.geomorph.2012.11.016 CrossRefGoogle Scholar
  4. Bondesan A, Meneghel M, Sauro U (1992) Morphometric analysis of dolines. Int J Speleol 21(1–4):1–55.  https://doi.org/10.5038/1827-806X.21.1.1 CrossRefGoogle Scholar
  5. Ćalić J (2011) Karstic uvala revisited: toward a redefinition of the term. Geomorphology 134:32–42.  https://doi.org/10.1016/j.geomorph.2011.06.029 CrossRefGoogle Scholar
  6. Čar J (2001) Structural bases for shaping of dolines. Acta Carsologica 30(2):239–256Google Scholar
  7. Čar J (2018) Geostructural mapping of karstified limestones. Geologija 61(2):133–162.  https://doi.org/10.5474/geologija.2018.010 CrossRefGoogle Scholar
  8. Day M (1983) Doline morphology and development in Barbados. Ann Assoc Am Geogr 73(2):206–219.  https://doi.org/10.1111/j.1467-8306.1983.tb01408.x CrossRefGoogle Scholar
  9. de Carvalho Júnior OA, Guimarães RF, Montgomery DR, Gillespie AR, Gomes RAT, Souza Martins É, Silva NC (2014) Karst depression detection using ASTER, ALOS/PRISM and SRTM-derived digital elevation models in the Bambuí Group, Brazil. Remote Sens 6:330–351.  https://doi.org/10.3390/rs6010330 CrossRefGoogle Scholar
  10. Denizman C (2003) Morphometric and spatial distribution parameters of karstic depressions, lower Suwannee River Basin, Florida. J Cave Karst Stud 65(1):29–35Google Scholar
  11. Doctor DH, Young JA (2013) An evaluation of automated GIS tools for delineating karst sinkholes and closed depressions from 1 m lidar-derived digital elevation data. In: Land L, Doctor DH, Stephenson JB (eds) Proc. 13th Multidisciplinary Conf. sinkholes and the engineering and environmental impacts of karst, National Cave and Karst Research Institute, pp. 449–458. http://doi.org/10.5038/9780979542275.1156
  12. Enyedi P, Pap M, Kovács Z, Takács-Szilágyi L, Szabó S (2018) Efficiency of local minima and GLM techniques in sinkhole extraction from a LiDAR-based terrain model. Int J Digit Earth.  https://doi.org/10.1080/17538947.2018.1501107 CrossRefGoogle Scholar
  13. Faivre S, Pahernik M (2007) Structural influences on the spatial distribution of dolines, island of Brač, Croatia. Z Geomorphol 51(4):487–503.  https://doi.org/10.1127/0372-8854/2007/0051-0487 CrossRefGoogle Scholar
  14. Florea L (2005) Using state-wide GIS data to identify the coincidence between sinkholes and geologic structure. J Cave Karst Stud 67(2):120–124Google Scholar
  15. Ford D, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, p 562CrossRefGoogle Scholar
  16. Gao Y, Alexander EC Jr, Barnes RJ (2005) Karst database implementation in Minnesota: analysis of sinkhole distribution. Environ Geol 47:1083–1098.  https://doi.org/10.1007/s00254-005-1241-2 CrossRefGoogle Scholar
  17. Jennings JN (1975) Doline morphometry as a morphogenetic tool: New Zealand examples. NZ Geogr 31:6–28.  https://doi.org/10.1111/j.1745-7939.1975.tb00793.x CrossRefGoogle Scholar
  18. Jež J, Otoničar B, Fuček L, Ogorelec B (2011) Late Cretaceous sedimentary evolution of a northern sector of the Adriatic carbonate platform (Matarsko Podolje, SW Slovenia). Facies 57:447–468.  https://doi.org/10.1007/s10347-010-0249-6 CrossRefGoogle Scholar
  19. Kobal M, Bertoncelj I, Pirotti F, Kutnar L (2014) Lidar processing for defining sinkhole characteristics under dense forest cover: a case study in the Dinaric mountains. Int Arch Photogramm Remote Sens Spat Inf Sci 7:113–118.  https://doi.org/10.5194/isprsarchives-XL-7-113-2014 CrossRefGoogle Scholar
  20. Mihevc A (1994) Contact karst of Brkini hills. Acta Carsologica 23:99–109Google Scholar
  21. Obu J, Podobnikar T (2013) Algorithm for karst depression recognition using digital terrain models. Geodetski vestnik 57(1):260–270.  https://doi.org/10.15292/geodetski-vestnik.2013.02.260-270 CrossRefGoogle Scholar
  22. Orndorff RC, Weary DJ, Lagueux KM (2000) Geographic information systems analysis of geologic controls on the distribution on dolines in the Ozarks of south-central Missouri, USA. Acta Carsologica 29(2):161–175.  https://doi.org/10.3986/ac.v29i2.456 CrossRefGoogle Scholar
  23. Pahernik M (2000) Prostorni raspored i gustoća ponikava SZ dijela Velike Kapele-rezultati računalne analize susjedstva [in Croatian]. Geoadria 5(1):105–120.  https://doi.org/10.15291/geoadria.156 CrossRefGoogle Scholar
  24. Pardo-Igúzquiza E, Durán JJ, Dowd PA (2013) Automatic detection and delineation of karst terrain depressions and its application in geomorphological mapping and morphometric analysis. Acta Carsologica 42(1):17–24.  https://doi.org/10.3986/ac.v42i1.637 CrossRefGoogle Scholar
  25. Placer L (2008) Principles of the tectonic subdivision of Slovenia. Geologija 51(2):205–217.  https://doi.org/10.5474/geologija.2008.021 CrossRefGoogle Scholar
  26. Plan L, Decker K (2006) Quantitative karst morphology of the Hochschwab plateau, Eastern Alps, Austria. Z Geomorphol NF Suppl 147:29–54Google Scholar
  27. Podobnikar T, Schöner T, Jansa J, Pfeifer N (2009) Spatial analysis of anthropogenic impact on karst geomorphology (Slovenia). Environ Geol 58:257–268.  https://doi.org/10.1007/s00254-008-1607-3 CrossRefGoogle Scholar
  28. Purser BH, Brown A, Aissaoui DM (1994) Nature, origins and evolution of porosity in dolomites. In: Purser B, Tucker M, Zenger D (eds) dolomites. The International Association of Sedimentologists Special Publication 21. IAS, Surrey, pp 283–308.  https://doi.org/10.1002/9781444304077.ch16 CrossRefGoogle Scholar
  29. Santo A, Ascione A, Del Prete S, di Crescenzo G, Santangelo N (2011) Collapse sinkholes distribution in the carbonate massifs of central and southern Apennines. Acta Carsologica 40(1):95–112.  https://doi.org/10.3986/ac.v40i1.31 CrossRefGoogle Scholar
  30. Sauro U (2003) Dolines and sinkholes: aspect of evolution and problems of classification. Acta Carsologica 32(4):41–52.  https://doi.org/10.3986/ac.v32i2.335 CrossRefGoogle Scholar
  31. Šegina E, Benac Č, Rubinič J, Knez M (2018) Morphometric analyses of dolines—the problem of delineation and calculation of basic parameters. Acta Carsologica 47(1):22–33.  https://doi.org/10.3986/ac.v47i1.4941 CrossRefGoogle Scholar
  32. Šikić D, Pleničar M, Šparica M (1967) Basic geological map of SFRJ, sheet L 33-89 Ilirska Bistrica 1: 100,000. Beograd. Federal Geological Survey of Yugoslavia, BeogradGoogle Scholar
  33. Stearns DW, Friedman M (1972) Reservoirs in fractured rock. In: King RE (ed) Stratigraphic oil and gas fields. AAPG Memori 16, Tulsa, pp 82–106.  https://doi.org/10.1306/M16371C8 CrossRefGoogle Scholar
  34. Stepišnik U, Ferk M, Gostinčar P, Černuta P, Peternelj K, Štembergar T, Ilič U (2007) Alluvial fans on contact karst: an example from Matarsko podolje, Slovenia. Acta Carsologica 36(2):209–215.  https://doi.org/10.3986/ac.v36i2.189 CrossRefGoogle Scholar
  35. Šušteršič F (1994) Classic dolines of classical site. Acta Carsologica 23:123–152Google Scholar
  36. Šušteršič F (1996) The pure karst model. Cave Karst Sci 23(1):25–32Google Scholar
  37. Šušteršič F (2006a) A power function model for the basic geometry of solution dolines: considerations from the classical karst of south-central Slovenia. Earth Surf Process Landf 31:293–302.  https://doi.org/10.1002/esp.1244 CrossRefGoogle Scholar
  38. Šušteršič F (2006b) Relationships between deflector faults, collapse dolines and collector channel formation: some examples from Slovenia. Int J Speleol 35:11–12.  https://doi.org/10.5038/1827-806X.35.1.1 CrossRefGoogle Scholar
  39. Šušteršič F (2017) A conceptual model of Dinaric solution doline dynamics. Cave Karst Sci 44(2):66–75Google Scholar
  40. Telbisz T (2010) Morphology and GIS-analysis of closed depressions in Sinjajevina Mts (Montenegro). Karst Dev 1(1):41–47Google Scholar
  41. Telbisz T, Dragušica H, Nagy B (2009) Doline morphometric analysis and karst morphology of Biokovo Mt (Croatia) based on field observations and digital terrain analysis. Hrvatski geografski glasnik 71(2):5–22.  https://doi.org/10.21861/hgg.2009.71.02.01 CrossRefGoogle Scholar
  42. Theilen-Willige B (2018) Detection of karst features in the Black hills area in south Dakota/Wyoming, USA, based on evaluations of remote sensing data. Geosciences 8(6):192.  https://doi.org/10.3390/geosciences8060192 CrossRefGoogle Scholar
  43. Tičar J, Perko D, Volk Bahun M (2018) Geoheritage and landscape diversity of Slovenia. In: Pokrajina v visoki ločljivosti, GIS v Sloveniji, vol 14. ZRC SAZU pp 57–74. https://giam.zrc-sazu.si/en/publikacije/pokrajina-v-visoki-locljivosti#v
  44. Verbovšek T (2003) Cave forms and origin of the cave Pečina v Zjatih (Matarsko podolje, Slovenia). Acta Carsologica 32:131–144.  https://doi.org/10.3986/ac.v32i1.369 CrossRefGoogle Scholar
  45. Verbovšek T, Veselič M (2008) Factors influencing the hydraulic properties of wells in dolomite aquifers of Slovenia. Hydrogeol J 16:779–795.  https://doi.org/10.1007/s10040-007-0250-5 CrossRefGoogle Scholar
  46. White EL, White WB (1979) Quantitative morphology of landforms in carbonate rock basins in the Appalachian highlands. Geol Soc Am Bull 90:385–396.  https://doi.org/10.1130/0016-7606(1979)90%3C385:QMOLIC%3E2.0.CO;2 CrossRefGoogle Scholar
  47. Williams PW (1972a) Morphometric analysis of polygonal karst in New Guinea. Geol Soc Am Bull 83:761–796.  https://doi.org/10.1130/0016-7606(1972)83%5b761:MAOPKI%5d2.0.CO;2 CrossRefGoogle Scholar
  48. Williams PW (1972b) The analysis of spatial characteristics of karst terrains. In: Chorley RJ (ed) Spatial analysis in geomorphology. Methuen, London, pp 135–163Google Scholar
  49. Zeynel Öztürk M, Şimşek M, Furkan Şener M, Utlu M (2018) GIS based analysis of doline density on Taurus mountains, Turkey. Environ Earth Sci.  https://doi.org/10.1007/s12665-018-7717-7 CrossRefGoogle Scholar
  50. Žvab Rožič P, Čar J, Rožič B (2015) Geological structure of the Divača area and its influence on the speleogenesis and hydrogeology of Kačna jama. Acta Carsologica 44(2):153–168.  https://doi.org/10.3986/ac.v44i2.1958 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Geology, Faculty of Natural Sciences and EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations