Abstract
Debris flows are a moving mass composed from water and solids mixture, mainly in form of sediments, with a high destructive power. The debris volume that is transported and deposited outside the drainage system of a watershed has a great importance in the definition of its hydrological response. The objective of this work was to propose predictive models generated through the adjustment of multivariate statistical techniques, to estimate the sediment volumes deposited by debris flows. Measurements and calculations of the morphometric parameters of the watersheds and drainage networks have been performed with the support of GIS software and spreadsheets. The relationships between morphometric parameters and sediment volumes have been analyzed by applying multivariate statistical techniques such as linear correlation analysis. The principal component analysis and multiple linear regression analysis have been performed with principal components, which allowed the generation of predictive models. From the predictive models generated for the sediment volumes deposited by the debris flow event of December 1999, raised results closer to reality with better Pearson’s correlation coefficients from those related to the gradient and shape of the watershed relief and extension of the drainage network morphometric variables. For the estimation of deposited sediment volumes due pre- and post-1999 event conditions, only the predictive models generated with the gradient and shape of the watershed relief variable have had good results.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Amend S (1991) El Ávila National Park (national parks and environmental conservation N° 2) (Parque Nacional El Ávila (Parques Nacionales y Conservación Ambiental N° 2)). Stephan y Thora Amend, Caracas
Artigas J, Córdova J (2010) Estimation of volumes and peaks of debris flows and sediment yield in Vargas State watersheds (Estimación de volúmenes y picos de aludes torrenciales y producción de sedimentos en cuencas del estado Vargas). In: López J (ed) Lecciones aprendidas del desastre de Vargas: aportes científico-tecnológicos y experiencias nacionales en el campo de la prevención y mitigación de riesgos. Instituto de Mecánica de Fluidos, Facultad de Ingeniería, Universidad Central de Venezuela, Caracas, pp 239–257
Artigas J, López J, Córdova J (2004) Sediment yield in the watersheds of the southern slopes of El Ávila National Park (Producción de sedimentos en las cuencas de la vertiente sur del Parque Nacional El Ávila). Dissertation, Universidad Central de Venezuela
Artigas J, López JL, Córdova JR (2006) Methodology to estimate the total sediment transport in mountainous river basins. Revista Técnica de la Facultad de Ingeniería 29(3):221–234
Ballesteros-Cánovas JA, Czajka B, Janecka K, Lempa M, Kaczka RJ, Stoffel M (2015) Flash floods in the Tatra Mountain streams: frequency and triggers. Sci Total Environ 511:639–648
Bel C, Liébault F, Navratil O, Eckert N, Bellot H, Fontaine F, Ligle D (2017) Rainfall control of debris-flow triggering in the Réal Torrent, Southern French Prealps. Geomorphology 291:17–32. https://doi.org/10.1016/j.geomorph.2016.04.004
Bremer M, Sass O (2012) Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow event. Geomorphology 138:49–60. https://doi.org/10.1016/j.geomorph.2011.08.024
Centro de Procesamiento Digital de Imágenes (1999) IKONOS pancromática, resolución espacial 1 metro. Baruta
Chen HX, Zhang S, Peng M, Zhang LM (2016) A physically-based multi-hazard risk assessment platform for regional rainfall-induced slope failures and debris flows. Eng Geol 203:15–29. https://doi.org/10.1016/j.enggeo.2015.12.009
Córdova J, González M (2003) Estimation of the volumes and maximum discharges produced by the debris flows occurred in December 1999 in the watersheds of the Central Coast of Vargas State, Venezuela (Estimación de los volúmenes y caudales máximos que produjeron los aludes torrenciales ocurridos en Diciembre de 1999 en cuencas del Litoral Central del estado Vargas, Venezuela). Acta Cient Venez 54(1):33–48
Costa JE (1984) Physical geomorphology of debris flows. In: Costa JE, Fleisher PJ (eds) Developments and applications of geomorphology. Springer, Berlin, pp 268–317
Costa JE (1988) Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows. In: Baker VR, Kochel RC, Patton PC (eds) Flood Geomorphology. Wiley, New York, pp 113–122
Coussot P, Meunier M (1996) Recognition, classification and mechanical description of debris flows. Earth Sci Rev 40(3):209–227
De Martonne E (1909) Treatise of physical geography (Traité de géographie physique). A. Colin, Paris
Destro E, Marra F, Nikolopoulos E, Zoccatelli E, Creutin JD, Borga M (2017) Spatial estimation of debris flows-triggering rainfall and its dependence on rainfall return period. Geomorphology 278:269–279. https://doi.org/10.1016/j.geomorph.2016.11.019
Dietrich A, Krautblatter M (2017) Evidence for enhanced debris-flow activity in the Northern Calcareous Alps since the 1980s (Plansee, Austria). Geomorphology 287:144–158. https://doi.org/10.1016/j.geomorph.2016.01.013
Dirección de Cartografía Nacional (1958) Hojas II-8, III-8, IV-8, I-9, II-9, III-9, IV-9, I-10, II-10, III-10, IV-10, I-11, II-11, III-11, IV-11, I-12, II-12, III-12, IV-12, I-13, II-13, III-13 y IV-13 [Planos topográficos a escala 1:5.000, Proyecto BITUCOTEX]. Caracas
Dirección de Cartografía Nacional (1979) Hoja 6847-IV-SO 23 de Enero; Hoja 6847-I-SO Curupao; Hoja 6847-IV-NE El Caribe; Hoja 6847-IV-SE Los Chorros; Hoja 6847-IV-NO Maiquetía; y Hoja 6847-I-NO Naiguatá [Cartas topográficas a escala 1:25.000]. Caracas
Fan L, Lehmann P, McArdell B, Or D (2017) Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment. Geomorphology 280:1–15. https://doi.org/10.1016/j.geomorph.2016.10.007
Faniran A (1968) The index of drainage intensity—a provisional new drainage factor. Aust J Sci 31(9):328–330
García-Martínez R, Lopez JL (2005) Debris flows on December 1999 in Venezuela. In: Jakob M, Hungr O (eds) Chapter 20 of debris-flow hazards and related phenomena. Springer, Berlin
Gardiner V (1981) Drainage basin morphometry. In: Goudie A (ed) Geomorphological techniques. George Allen & Unwin, London, pp 47–55
Giannecchini R, Galanti Y, D’Amato Avanzi G, Barsanti M (2016) Probabilistic rainfall thresholds for triggering debris flows in a human-modified landscape. Geomorphology 257:94–107. https://doi.org/10.1016/j.geomorph.2015.12.012
Gobernación del Distrito Federal (1984) Hojas B-42, C-42, D-42, E-42, B-43, C-43, D-43, E-43, B-44, C-44, D-44, B-45, B-46, B-47, B-48 y B-49 [Planos topográficos a escala 1:5.000]. Caracas
Gravelius H (1914) River science (Flusskunde). Goschen Verlagshan dlug Berlin. In: Zavoianu I (1985) (ed) Morphometry of drainage basins. Elsevier, Amsterdam
Hack J (1957) Studies of longitudinal stream profiles in Virginia and Maryland. U. S. Geological Survey Prof. Paper 294-B
Hadley RF, Schumm SA (1961) Sediment sources and drainage basin characteristics in upper Cheyenne River basin. US Geological Survey Water-Supply Paper 1531:198
Henao J (1998) Introduction to watershed management (Introducción al manejo de cuencas hidrográficas). Universidad Santo Tomás, Santafé de Bogotá
Hernández E (2006) Mud flows and debris flows during the storms of December 15 and 16, 1999 in the Vargas State, Venezuela (Flujos de barros y escombros durante las tormentas de los días 15 y 16 de diciembre de 1999 en el edo. Vargas, Venezuela). In: López J, García R (eds) Los aludes torrenciales de Diciembre 1999 en Venezuela. Instituto de Mecánica de Fluidos, Facultad de Ingeniería, Universidad Central de Venezuela, Caracas, pp 443–453
Horton R (1932) Drainage basin characteristics. Trans Am Geophys Union 13:350–361. https://doi.org/10.1029/TR013i001p00350
Horton R (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370. https://doi.org/10.1130/0016-7606(1945)56%5b275:EDOSAT%5d2.0.CO;2
Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441/498–520
Huber O, Alarcón C (1988) Vegetation map of Venezuela (Mapa de la vegetación de Venezuela) [Mapa a escala 1:2.000.000]. Caracas
Instituto Geográfico de Venezuela Simón Bolívar (2003) Caracas and surroundings (Caracas y alrededores) (Mapa Especial) [Mapa a escala 1:100.000]. Caracas
Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296
Jakob M, Hungr O, Jakob DM (2005) Debris-flow hazards and related phenomena, vol 739. Springer, Berlin
Langbein W (1947) Topographic characteristics of drainage basins. U. S. Geological Survey Water Supply Paper 968C:125-157
Larsen MC, Conde MTV, Clark RA (2001a) Landslide hazards associated with flash-floods, with examples from the December 1999 disaster in Venezuela. In: Gruntfest E, Handmer J (eds) Coping with flash floods. Springer, Dordrecht, pp 259–275
Larsen MC, Wieczorek GF, Eaton LS, Morgan BA, Torres-Sierra H (2001b) Venezuelan debris flow and flash flood disaster of 1999 studied. EOS Trans Am Geophys Union 82(47):572–573
Legorreta Paulín G, Bursik M, Zamorano Orozco JJ, Lugo Hubp J, Martínez-Hackert B, Bajo Sánchez JV (2017) Estimation of the deposit volumes linked to landslides through landforms, on the SW flank of the Pico de Orizaba volcano, Puebla-Veracruz (Estimación del volumen de los depósitos asociados a deslizamientos a través de geoformas, en el flanco SW del volcán Pico de Orizaba, Puebla-Veracruz). Investig Geográf 92:1–13. https://doi.org/10.14350/rig.51113
López J, Pérez D, García R, Shucheng Z (2006) Hydro-geomorphological assessment of the debris flows of December 1999 in Venezuela (Evaluación hidro-geomorfológica de los aludes torrenciales de diciembre 1999 en Venezuela). In: López J, García R (eds) los aludes torrenciales de diciembre 1999 en Venezuela. Instituto de Mecánica de Fluidos, Facultad de Ingeniería, Universidad Central de Venezuela, Caracas, pp 41–57
Ma Ch, Wang Y, Hu K, Du C, Yang W (2017) Rainfall intensity–duration threshold and erosion competence of debris flows in four areas affected by the 2008Wenchuan earthquake. Geomorphology 282:85–95. https://doi.org/10.1016/j.geomorph.2017.01.012
Marra F, Nikolopoulos EI, Creutin JD, Borga M (2016) Space–time organization of debris flows-triggering rainfall and its effect on the identification of the rainfall threshold relationship. J Hydrol 541:246–255. https://doi.org/10.1016/j.jhydrol.2015.10.010
Martha T, Reddy P, Bhatt C, Raj K, Nalini J, Padmanabha E, Narender B, Kumar K, Muralikrishnan S, Rao G, Diwakar P, Dadhwal V (2017) Debris volume estimation and monitoring of Phuktal river landslide-dammed lake in the Zanskar Himalayas, India using Cartosat-2 images. Landslides 14(1):373–383. https://doi.org/10.1007/s10346-016-0749-8
Martin Y, Johnson E, Chaikina O (2017) Gully recharge rates and debris flows: a combined numerical modelling and field-based investigation, Haida Gwaii, British Columbia. Geomorphology 278:252–268
Martínez E (2010) Methods of hydrological and hydraulic calculations of the debris flows in Vargas of 1999 from field observation (Métodos de cálculos hidrológicos e hidráulicos de los flujos en Vargas de 1999 a partir de la observación de campo). In: López J (ed) Lecciones aprendidas del desastre de Vargas: aportes científico-tecnológicos y experiencias nacionales en el campo de la prevención y mitigación de riesgos. Instituto de Mecánica de Fluidos, Facultad de Ingeniería, Universidad Central de Venezuela, Caracas, pp 345–355
Melton M (1957) An analysis of the relations among elements of climate, surface properties, and geomorphology (Project NR 389-042, Tech. Rept. 11). Columbia University, Dept. of Geology, ONR, Geography Branch, New York
Melton M (1958) Geometric properties of mature drainage systems and their representation in an E4 phase space. J Geol 66:35–54. https://doi.org/10.1086/626481
Melton M (1965) The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona. J Geol 73:1–38. https://doi.org/10.1086/627044
Miller V (1953) A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee (Project NR 389-042, Tech. Rept. 3). Columbia University, Dept. of Geology, ONR, Geography Branch, New York
Morisawa M (1985) Rivers: form and process. Longman, London
Mueller J (1968) An introduction to the hydraulic and topographic sinuosity indexes. Ann Assoc Am Geogr 58:371–385. https://doi.org/10.1111/j.1467-8306.1968.tb00650.x
Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3(2):159–173
Palau RM, Hürlimann M, Pinyol J, Moya J, Victoriano A, Génova M, Puig-Polo C (2017) Recent debris flows in the Portainé catchment (Eastern Pyrenees, Spain): analysis of monitoring and field data focussing on the 2015 event. Landslides 14(3):1161–1170
Pearson K (1901) On lines and planes of closest fit to systems of points in space. Phil Mag 2:559–572
Pérez FL (2001) Matrix granulometry of catastrophic debris flows (December 1999) in central coastal Venezuela. CATENA 45(3):163–183
Pike RJ, Wilson SE (1971) Elevation- relief ratio hypsometric integral and geomorphic area-altitude analysis. Geol Soc Am Bull 82:1079–1084. https://doi.org/10.1130/0016-7606(1971)82%5b1079:ERHIAG%5d2.0.CO;2
Potter W (1953) Rainfall and topographic factor that affect run-off. Trans Am Geophys Union 34:67–73. https://doi.org/10.1029/TR034i001p00067
Roche M (1963) Hydrology of surface. Gauthier-Villars, Paris
Santi PM, Hewitt K, VanDine DF, Cruz EB (2011) Debris-flow impact, vulnerability, and response. Nat Hazards 56(1):371–402
Schumm S (1956) Evolution of drainage basins and slopes in badlands at Perth Amboy, New Jersey. Bull Geol Soc Am 67:597–646. https://doi.org/10.1130/0016-7606(1956)67%5b597:EODSAS%5d2.0.CO;2
Schumm S (1963) Sinuosity of alluvial rivers on the great plains. Geol Soc Am Bull 74:1089–1100. https://doi.org/10.1130/0016-7606(1963)74%5b1089:SOAROT%5d2.0.CO;2
Schumm S (1977) The fluvial system. Wiley, New York
Servicio Autónomo de Geografía y Cartografía Nacional (1995) Hoja 6847-IV-NE Caraballeda; Hoja 6847-IV-SO Caracas; Hoja 6847-I-SO Curupao; Hoja 6847-IV-NO La Guaira; Hoja 6847-IV-SE Los Chorros; y Hoja 6847-I-NO Naiguatá [Ortofotomapas a escala 1:25.000]. Caracas
Seyhan E (1977) The watershed as an hydrologic unit. Geografisch Inst. der Rijksuniv, Utrecht
Shreve R (1974) Variations of mainstream length with basin area in river networks. Water Resour Res 10(6):1167–1177. https://doi.org/10.1029/WR010i006p01167
Smith K (1950) Standards for grading texture of erosional topography. Am J Sci 248:655–668. https://doi.org/10.2475/ajs.248.9.655
Sreedevi PD, Subrahmanyam K, Ahmed S (2005) The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environ Geol 47(3):412–420. https://doi.org/10.1007/s00254-004-1166-1
Steyermark J, Huber O (1978) Flora of Ávila: flora and vegetation of the mountains of Ávila, La Silla and Naiguatá (Flora del Ávila: flora y vegetación de las montañas del Ávila, de la Silla y del Naiguatá). Sociedad Venezolana de Ciencias Naturales, Völlmer Foundation, Ministerio del Ambiente y de los Recursos Naturales Renovables, Caracas
Strahler A (1952) Dynamic basis of geomorphology. Bull Geol Soc Am 63:923–938. https://doi.org/10.1130/0016-7606(1952)63%5b923:DBOG%5d2.0.CO;2
Strahler A (1957) Quantitative analysis applied of watershed geomorphology. Trans Am Geophys Union 38:913–920. https://doi.org/10.1029/TR038i006p00913
Strahler A (1964) Quantitative geology of drainage basins and channel networks. In: Chow V (ed) Handbook of applied hydrology. McGraw-Hill Book Co., New York, pp 39–76
Tichavský R, Šilhán K (2015) Dendrogeomorphic approaches for identifying the probable occurrence of debris flows and related torrential processes in steep headwater catchments: the Hrubý Jeseník Mountains, Czech Republic. Geomorphology 246:445–457
Tiranti D, Cavalli M, Crema S, Zerbato M, Graziadei M, Barbero S, Cremonini R, Silvestro C, Bodrato G, Tresso F (2016) Semi-quantitative method for the assessment of debris supply from slopes to river in ungauged catchments. Sci Total Environ 554–555:337–348
Urbani F (1999) Review of the igneous and metamorphic rock units of the Coastal Mountain Range, Venezuela (Revisión de las unidades de rocas ígneas y metamórficas de la Cordillera de la Costa, Venezuela). GEOS (Caracas, Escuela de Geologìa Y Minas, Universidad Central de Venezuela) 33:1–170
Urbani F (2000) Geological considerations of the Vargas State disaster of December 1999 (Consideraciones geológicas de la catástrofe del estado Vargas de diciembre de 1999). In: Memorias del XVI Seminario Venezolano de Geotecnia: calamidades geotécnicas urbanas con visión al siglo XXI, la experiencia para proyectos del futuro. Sociedad Venezolana de Geotecnia, Caracas, pp 179–193
Urbani F (2002a) The Miguelena river of Camurí Grande, Vargas State: a window to the geology of the Coastal Mountain Range—excursion guide (Geological Excursions N° 02-1) (El río Miguelena de Camurí Grande, estado Vargas: una ventana a la geología de la Cordillera de la Costa—guía de excursión (Excursiones Geológicas N° 02-1)). Sociedad Venezolana de Geólogos, Comité Metropolitano de Excursiones, Caracas
Urbani F (2002b) Geology of the highway area and old road Caracas—La Guaira, Capital District and Vargas State: excursion guide (Geología del área de la autopista y carretera vieja Caracas—La Guaira, Distrito Capital y estado Vargas: guía de excursión). Geos (Caracas, Escuela de Geologìa Y Minas, Universidad Central de Venezuela) 35:1–75
Urbani F (2002c) Geology of the Vargas State and the igneous-metamorphic units of the Coastal Mountain Range (Geología del estado Vargas y las unidades ígneo-metamórficas de la Cordillera de la Costa). In: Memorias del III Coloquio sobre Microzonificación Sísmica y III Jornadas de Sismología Histórica (Colección Serie Técnica Nº 2). Fundación Venezolana de Investigaciones Sismológicas, Caracas, pp 236–240
Urbani F (2002d) Nomenclature of the igneous and metamorphic rock units of the Coastal Mountain Range, Venezuela (Nomenclatura de las unidades de rocas ígneas y metamórficas de la Cordillera de la Costa, Venezuela). Geos (Caracas, Escuela de Geologìa Y Minas, Universidad Central de Venezuela) 35:1–83
Urbani F, Rodríguez J, Barboza L, Rodríguez S, Cano V, Melo L, Castillo A, Suárez J, Vivas V, Fournier H (2006) Geology of the Vargas State, Venezuela (Geología del estado Vargas, Venezuela). In: López J, García R (eds) Los aludes torrenciales de Diciembre 1999 en Venezuela. Instituto de Mecánica de Fluidos, Facultad de Ingeniería, Universidad Central de Venezuela, Caracas, pp 133–156
Vallance JW, Scott KM (1997) The Osceola Mudflow from Mount Rainier: Sedimentology and hazard implications of a huge clay-rich debris flow. Geol Soc Am Bull 109(2):143–163. https://doi.org/10.1130/0016-7606(1997)109<0143:TOMFMR>2.3.CO;2
van Steijn H (1996) Debris-flow magnitude—frequency relationships for mountainous regions of Central and Northwest Europe. Geomorphology 15(3–4):259–273. https://doi.org/10.1016/0169-555X(95)00074-F
Vareschi V (1992) Ecology of the tropical vegetation: with special attention to research in Venezuela (Ecología de la vegetación tropical: con especial atención a investigaciones en Venezuela). Sociedad Venezolana de Ciencias Naturales, Caracas
Wei Z, Shang Y, Zhao Y, Pan P, Jiang Y (2017) Rainfall threshold for initiation of channelized debris flows in a small catchment based on in-site measurement. Eng Geol 217:23–34. https://doi.org/10.1016/j.enggeo.2016.12.003
Acknowledgements
The authors are very grateful to the Fondo para el Desarrollo de la Investigación (FONDEIN) of the Universidad Pedagógica Experimental Libertador – Instituto Pedagógico de Caracas (UPEL-IPC) (Caracas, Venezuela), for the financial support of the research project from which this paper has been derived. We would like also to thank the editorial handling, Rachid Seqqat and two anonymous reviewers for the significant improvement of an earlier version of this article.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Méndez, W., Córdova, J., de Guenni, L.B. et al. Predictive models to estimate sediment volumes deposited by debris flows (Vargas state, Venezuela): an adjustment of multivariate statistical techniques. Environ Earth Sci 78, 350 (2019). https://doi.org/10.1007/s12665-019-8346-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12665-019-8346-5

