Skip to main content

Advertisement

Log in

Predictive models to estimate sediment volumes deposited by debris flows (Vargas state, Venezuela): an adjustment of multivariate statistical techniques

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Debris flows are a moving mass composed from water and solids mixture, mainly in form of sediments, with a high destructive power. The debris volume that is transported and deposited outside the drainage system of a watershed has a great importance in the definition of its hydrological response. The objective of this work was to propose predictive models generated through the adjustment of multivariate statistical techniques, to estimate the sediment volumes deposited by debris flows. Measurements and calculations of the morphometric parameters of the watersheds and drainage networks have been performed with the support of GIS software and spreadsheets. The relationships between morphometric parameters and sediment volumes have been analyzed by applying multivariate statistical techniques such as linear correlation analysis. The principal component analysis and multiple linear regression analysis have been performed with principal components, which allowed the generation of predictive models. From the predictive models generated for the sediment volumes deposited by the debris flow event of December 1999, raised results closer to reality with better Pearson’s correlation coefficients from those related to the gradient and shape of the watershed relief and extension of the drainage network morphometric variables. For the estimation of deposited sediment volumes due pre- and post-1999 event conditions, only the predictive models generated with the gradient and shape of the watershed relief variable have had good results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Amend S (1991) El Ávila National Park (national parks and environmental conservation N° 2) (Parque Nacional El Ávila (Parques Nacionales y Conservación Ambiental N° 2)). Stephan y Thora Amend, Caracas

    Google Scholar 

  • Artigas J, Córdova J (2010) Estimation of volumes and peaks of debris flows and sediment yield in Vargas State watersheds (Estimación de volúmenes y picos de aludes torrenciales y producción de sedimentos en cuencas del estado Vargas). In: López J (ed) Lecciones aprendidas del desastre de Vargas: aportes científico-tecnológicos y experiencias nacionales en el campo de la prevención y mitigación de riesgos. Instituto de Mecánica de Fluidos, Facultad de Ingeniería, Universidad Central de Venezuela, Caracas, pp 239–257

    Google Scholar 

  • Artigas J, López J, Córdova J (2004) Sediment yield in the watersheds of the southern slopes of El Ávila National Park (Producción de sedimentos en las cuencas de la vertiente sur del Parque Nacional El Ávila). Dissertation, Universidad Central de Venezuela

  • Artigas J, López JL, Córdova JR (2006) Methodology to estimate the total sediment transport in mountainous river basins. Revista Técnica de la Facultad de Ingeniería 29(3):221–234

    Google Scholar 

  • Ballesteros-Cánovas JA, Czajka B, Janecka K, Lempa M, Kaczka RJ, Stoffel M (2015) Flash floods in the Tatra Mountain streams: frequency and triggers. Sci Total Environ 511:639–648

    Article  Google Scholar 

  • Bel C, Liébault F, Navratil O, Eckert N, Bellot H, Fontaine F, Ligle D (2017) Rainfall control of debris-flow triggering in the Réal Torrent, Southern French Prealps. Geomorphology 291:17–32. https://doi.org/10.1016/j.geomorph.2016.04.004

    Article  Google Scholar 

  • Bremer M, Sass O (2012) Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow event. Geomorphology 138:49–60. https://doi.org/10.1016/j.geomorph.2011.08.024

    Article  Google Scholar 

  • Centro de Procesamiento Digital de Imágenes (1999) IKONOS pancromática, resolución espacial 1 metro. Baruta

  • Chen HX, Zhang S, Peng M, Zhang LM (2016) A physically-based multi-hazard risk assessment platform for regional rainfall-induced slope failures and debris flows. Eng Geol 203:15–29. https://doi.org/10.1016/j.enggeo.2015.12.009

    Article  Google Scholar 

  • Córdova J, González M (2003) Estimation of the volumes and maximum discharges produced by the debris flows occurred in December 1999 in the watersheds of the Central Coast of Vargas State, Venezuela (Estimación de los volúmenes y caudales máximos que produjeron los aludes torrenciales ocurridos en Diciembre de 1999 en cuencas del Litoral Central del estado Vargas, Venezuela). Acta Cient Venez 54(1):33–48

    Google Scholar 

  • Costa JE (1984) Physical geomorphology of debris flows. In: Costa JE, Fleisher PJ (eds) Developments and applications of geomorphology. Springer, Berlin, pp 268–317

    Chapter  Google Scholar 

  • Costa JE (1988) Rheologic, geomorphic, and sedimentologic differentiation of water floods, hyperconcentrated flows, and debris flows. In: Baker VR, Kochel RC, Patton PC (eds) Flood Geomorphology. Wiley, New York, pp 113–122

    Google Scholar 

  • Coussot P, Meunier M (1996) Recognition, classification and mechanical description of debris flows. Earth Sci Rev 40(3):209–227

    Article  Google Scholar 

  • De Martonne E (1909) Treatise of physical geography (Traité de géographie physique). A. Colin, Paris

    Google Scholar 

  • Destro E, Marra F, Nikolopoulos E, Zoccatelli E, Creutin JD, Borga M (2017) Spatial estimation of debris flows-triggering rainfall and its dependence on rainfall return period. Geomorphology 278:269–279. https://doi.org/10.1016/j.geomorph.2016.11.019

    Article  Google Scholar 

  • Dietrich A, Krautblatter M (2017) Evidence for enhanced debris-flow activity in the Northern Calcareous Alps since the 1980s (Plansee, Austria). Geomorphology 287:144–158. https://doi.org/10.1016/j.geomorph.2016.01.013

    Article  Google Scholar 

  • Dirección de Cartografía Nacional (1958) Hojas II-8, III-8, IV-8, I-9, II-9, III-9, IV-9, I-10, II-10, III-10, IV-10, I-11, II-11, III-11, IV-11, I-12, II-12, III-12, IV-12, I-13, II-13, III-13 y IV-13 [Planos topográficos a escala 1:5.000, Proyecto BITUCOTEX]. Caracas

  • Dirección de Cartografía Nacional (1979) Hoja 6847-IV-SO 23 de Enero; Hoja 6847-I-SO Curupao; Hoja 6847-IV-NE El Caribe; Hoja 6847-IV-SE Los Chorros; Hoja 6847-IV-NO Maiquetía; y Hoja 6847-I-NO Naiguatá [Cartas topográficas a escala 1:25.000]. Caracas

  • Fan L, Lehmann P, McArdell B, Or D (2017) Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment. Geomorphology 280:1–15. https://doi.org/10.1016/j.geomorph.2016.10.007

    Article  Google Scholar 

  • Faniran A (1968) The index of drainage intensity—a provisional new drainage factor. Aust J Sci 31(9):328–330

    Google Scholar 

  • García-Martínez R, Lopez JL (2005) Debris flows on December 1999 in Venezuela. In: Jakob M, Hungr O (eds) Chapter 20 of debris-flow hazards and related phenomena. Springer, Berlin

    Google Scholar 

  • Gardiner V (1981) Drainage basin morphometry. In: Goudie A (ed) Geomorphological techniques. George Allen & Unwin, London, pp 47–55

    Google Scholar 

  • Giannecchini R, Galanti Y, D’Amato Avanzi G, Barsanti M (2016) Probabilistic rainfall thresholds for triggering debris flows in a human-modified landscape. Geomorphology 257:94–107. https://doi.org/10.1016/j.geomorph.2015.12.012

    Article  Google Scholar 

  • Gobernación del Distrito Federal (1984) Hojas B-42, C-42, D-42, E-42, B-43, C-43, D-43, E-43, B-44, C-44, D-44, B-45, B-46, B-47, B-48 y B-49 [Planos topográficos a escala 1:5.000]. Caracas

  • Gravelius H (1914) River science (Flusskunde). Goschen Verlagshan dlug Berlin. In: Zavoianu I (1985) (ed) Morphometry of drainage basins. Elsevier, Amsterdam

  • Hack J (1957) Studies of longitudinal stream profiles in Virginia and Maryland. U. S. Geological Survey Prof. Paper 294-B

  • Hadley RF, Schumm SA (1961) Sediment sources and drainage basin characteristics in upper Cheyenne River basin. US Geological Survey Water-Supply Paper 1531:198

  • Henao J (1998) Introduction to watershed management (Introducción al manejo de cuencas hidrográficas). Universidad Santo Tomás, Santafé de Bogotá

    Google Scholar 

  • Hernández E (2006) Mud flows and debris flows during the storms of December 15 and 16, 1999 in the Vargas State, Venezuela (Flujos de barros y escombros durante las tormentas de los días 15 y 16 de diciembre de 1999 en el edo. Vargas, Venezuela). In: López J, García R (eds) Los aludes torrenciales de Diciembre 1999 en Venezuela. Instituto de Mecánica de Fluidos, Facultad de Ingeniería, Universidad Central de Venezuela, Caracas, pp 443–453

    Google Scholar 

  • Horton R (1932) Drainage basin characteristics. Trans Am Geophys Union 13:350–361. https://doi.org/10.1029/TR013i001p00350

    Article  Google Scholar 

  • Horton R (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370. https://doi.org/10.1130/0016-7606(1945)56%5b275:EDOSAT%5d2.0.CO;2

    Article  Google Scholar 

  • Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:417–441/498–520

    Article  Google Scholar 

  • Huber O, Alarcón C (1988) Vegetation map of Venezuela (Mapa de la vegetación de Venezuela) [Mapa a escala 1:2.000.000]. Caracas

  • Instituto Geográfico de Venezuela Simón Bolívar (2003) Caracas and surroundings (Caracas y alrededores) (Mapa Especial) [Mapa a escala 1:100.000]. Caracas

  • Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296

    Article  Google Scholar 

  • Jakob M, Hungr O, Jakob DM (2005) Debris-flow hazards and related phenomena, vol 739. Springer, Berlin

    Google Scholar 

  • Langbein W (1947) Topographic characteristics of drainage basins. U. S. Geological Survey Water Supply Paper 968C:125-157

  • Larsen MC, Conde MTV, Clark RA (2001a) Landslide hazards associated with flash-floods, with examples from the December 1999 disaster in Venezuela. In: Gruntfest E, Handmer J (eds) Coping with flash floods. Springer, Dordrecht, pp 259–275

    Chapter  Google Scholar 

  • Larsen MC, Wieczorek GF, Eaton LS, Morgan BA, Torres-Sierra H (2001b) Venezuelan debris flow and flash flood disaster of 1999 studied. EOS Trans Am Geophys Union 82(47):572–573

    Article  Google Scholar 

  • Legorreta Paulín G, Bursik M, Zamorano Orozco JJ, Lugo Hubp J, Martínez-Hackert B, Bajo Sánchez JV (2017) Estimation of the deposit volumes linked to landslides through landforms, on the SW flank of the Pico de Orizaba volcano, Puebla-Veracruz (Estimación del volumen de los depósitos asociados a deslizamientos a través de geoformas, en el flanco SW del volcán Pico de Orizaba, Puebla-Veracruz). Investig Geográf 92:1–13. https://doi.org/10.14350/rig.51113

    Article  Google Scholar 

  • López J, Pérez D, García R, Shucheng Z (2006) Hydro-geomorphological assessment of the debris flows of December 1999 in Venezuela (Evaluación hidro-geomorfológica de los aludes torrenciales de diciembre 1999 en Venezuela). In: López J, García R (eds) los aludes torrenciales de diciembre 1999 en Venezuela. Instituto de Mecánica de Fluidos, Facultad de Ingeniería, Universidad Central de Venezuela, Caracas, pp 41–57

    Google Scholar 

  • Ma Ch, Wang Y, Hu K, Du C, Yang W (2017) Rainfall intensity–duration threshold and erosion competence of debris flows in four areas affected by the 2008Wenchuan earthquake. Geomorphology 282:85–95. https://doi.org/10.1016/j.geomorph.2017.01.012

    Article  Google Scholar 

  • Marra F, Nikolopoulos EI, Creutin JD, Borga M (2016) Space–time organization of debris flows-triggering rainfall and its effect on the identification of the rainfall threshold relationship. J Hydrol 541:246–255. https://doi.org/10.1016/j.jhydrol.2015.10.010

    Article  Google Scholar 

  • Martha T, Reddy P, Bhatt C, Raj K, Nalini J, Padmanabha E, Narender B, Kumar K, Muralikrishnan S, Rao G, Diwakar P, Dadhwal V (2017) Debris volume estimation and monitoring of Phuktal river landslide-dammed lake in the Zanskar Himalayas, India using Cartosat-2 images. Landslides 14(1):373–383. https://doi.org/10.1007/s10346-016-0749-8

    Article  Google Scholar 

  • Martin Y, Johnson E, Chaikina O (2017) Gully recharge rates and debris flows: a combined numerical modelling and field-based investigation, Haida Gwaii, British Columbia. Geomorphology 278:252–268

    Article  Google Scholar 

  • Martínez E (2010) Methods of hydrological and hydraulic calculations of the debris flows in Vargas of 1999 from field observation (Métodos de cálculos hidrológicos e hidráulicos de los flujos en Vargas de 1999 a partir de la observación de campo). In: López J (ed) Lecciones aprendidas del desastre de Vargas: aportes científico-tecnológicos y experiencias nacionales en el campo de la prevención y mitigación de riesgos. Instituto de Mecánica de Fluidos, Facultad de Ingeniería, Universidad Central de Venezuela, Caracas, pp 345–355

    Google Scholar 

  • Melton M (1957) An analysis of the relations among elements of climate, surface properties, and geomorphology (Project NR 389-042, Tech. Rept. 11). Columbia University, Dept. of Geology, ONR, Geography Branch, New York

  • Melton M (1958) Geometric properties of mature drainage systems and their representation in an E4 phase space. J Geol 66:35–54. https://doi.org/10.1086/626481

    Article  Google Scholar 

  • Melton M (1965) The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona. J Geol 73:1–38. https://doi.org/10.1086/627044

    Article  Google Scholar 

  • Miller V (1953) A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee (Project NR 389-042, Tech. Rept. 3). Columbia University, Dept. of Geology, ONR, Geography Branch, New York

  • Morisawa M (1985) Rivers: form and process. Longman, London

    Google Scholar 

  • Mueller J (1968) An introduction to the hydraulic and topographic sinuosity indexes. Ann Assoc Am Geogr 58:371–385. https://doi.org/10.1111/j.1467-8306.1968.tb00650.x

    Article  Google Scholar 

  • Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3(2):159–173

    Article  Google Scholar 

  • Palau RM, Hürlimann M, Pinyol J, Moya J, Victoriano A, Génova M, Puig-Polo C (2017) Recent debris flows in the Portainé catchment (Eastern Pyrenees, Spain): analysis of monitoring and field data focussing on the 2015 event. Landslides 14(3):1161–1170

    Article  Google Scholar 

  • Pearson K (1901) On lines and planes of closest fit to systems of points in space. Phil Mag 2:559–572

    Article  Google Scholar 

  • Pérez FL (2001) Matrix granulometry of catastrophic debris flows (December 1999) in central coastal Venezuela. CATENA 45(3):163–183

    Article  Google Scholar 

  • Pike RJ, Wilson SE (1971) Elevation- relief ratio hypsometric integral and geomorphic area-altitude analysis. Geol Soc Am Bull 82:1079–1084. https://doi.org/10.1130/0016-7606(1971)82%5b1079:ERHIAG%5d2.0.CO;2

    Article  Google Scholar 

  • Potter W (1953) Rainfall and topographic factor that affect run-off. Trans Am Geophys Union 34:67–73. https://doi.org/10.1029/TR034i001p00067

    Article  Google Scholar 

  • Roche M (1963) Hydrology of surface. Gauthier-Villars, Paris

    Google Scholar 

  • Santi PM, Hewitt K, VanDine DF, Cruz EB (2011) Debris-flow impact, vulnerability, and response. Nat Hazards 56(1):371–402

    Article  Google Scholar 

  • Schumm S (1956) Evolution of drainage basins and slopes in badlands at Perth Amboy, New Jersey. Bull Geol Soc Am 67:597–646. https://doi.org/10.1130/0016-7606(1956)67%5b597:EODSAS%5d2.0.CO;2

    Article  Google Scholar 

  • Schumm S (1963) Sinuosity of alluvial rivers on the great plains. Geol Soc Am Bull 74:1089–1100. https://doi.org/10.1130/0016-7606(1963)74%5b1089:SOAROT%5d2.0.CO;2

    Article  Google Scholar 

  • Schumm S (1977) The fluvial system. Wiley, New York

    Google Scholar 

  • Servicio Autónomo de Geografía y Cartografía Nacional (1995) Hoja 6847-IV-NE Caraballeda; Hoja 6847-IV-SO Caracas; Hoja 6847-I-SO Curupao; Hoja 6847-IV-NO La Guaira; Hoja 6847-IV-SE Los Chorros; y Hoja 6847-I-NO Naiguatá [Ortofotomapas a escala 1:25.000]. Caracas

  • Seyhan E (1977) The watershed as an hydrologic unit. Geografisch Inst. der Rijksuniv, Utrecht

    Google Scholar 

  • Shreve R (1974) Variations of mainstream length with basin area in river networks. Water Resour Res 10(6):1167–1177. https://doi.org/10.1029/WR010i006p01167

    Article  Google Scholar 

  • Smith K (1950) Standards for grading texture of erosional topography. Am J Sci 248:655–668. https://doi.org/10.2475/ajs.248.9.655

    Article  Google Scholar 

  • Sreedevi PD, Subrahmanyam K, Ahmed S (2005) The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. Environ Geol 47(3):412–420. https://doi.org/10.1007/s00254-004-1166-1

    Article  Google Scholar 

  • Steyermark J, Huber O (1978) Flora of Ávila: flora and vegetation of the mountains of Ávila, La Silla and Naiguatá (Flora del Ávila: flora y vegetación de las montañas del Ávila, de la Silla y del Naiguatá). Sociedad Venezolana de Ciencias Naturales, Völlmer Foundation, Ministerio del Ambiente y de los Recursos Naturales Renovables, Caracas

  • Strahler A (1952) Dynamic basis of geomorphology. Bull Geol Soc Am 63:923–938. https://doi.org/10.1130/0016-7606(1952)63%5b923:DBOG%5d2.0.CO;2

    Article  Google Scholar 

  • Strahler A (1957) Quantitative analysis applied of watershed geomorphology. Trans Am Geophys Union 38:913–920. https://doi.org/10.1029/TR038i006p00913

    Article  Google Scholar 

  • Strahler A (1964) Quantitative geology of drainage basins and channel networks. In: Chow V (ed) Handbook of applied hydrology. McGraw-Hill Book Co., New York, pp 39–76

    Google Scholar 

  • Tichavský R, Šilhán K (2015) Dendrogeomorphic approaches for identifying the probable occurrence of debris flows and related torrential processes in steep headwater catchments: the Hrubý Jeseník Mountains, Czech Republic. Geomorphology 246:445–457

    Article  Google Scholar 

  • Tiranti D, Cavalli M, Crema S, Zerbato M, Graziadei M, Barbero S, Cremonini R, Silvestro C, Bodrato G, Tresso F (2016) Semi-quantitative method for the assessment of debris supply from slopes to river in ungauged catchments. Sci Total Environ 554–555:337–348

    Article  Google Scholar 

  • Urbani F (1999) Review of the igneous and metamorphic rock units of the Coastal Mountain Range, Venezuela (Revisión de las unidades de rocas ígneas y metamórficas de la Cordillera de la Costa, Venezuela). GEOS (Caracas, Escuela de Geologìa Y Minas, Universidad Central de Venezuela) 33:1–170

    Google Scholar 

  • Urbani F (2000) Geological considerations of the Vargas State disaster of December 1999 (Consideraciones geológicas de la catástrofe del estado Vargas de diciembre de 1999). In: Memorias del XVI Seminario Venezolano de Geotecnia: calamidades geotécnicas urbanas con visión al siglo XXI, la experiencia para proyectos del futuro. Sociedad Venezolana de Geotecnia, Caracas, pp 179–193

  • Urbani F (2002a) The Miguelena river of Camurí Grande, Vargas State: a window to the geology of the Coastal Mountain Range—excursion guide (Geological Excursions N° 02-1) (El río Miguelena de Camurí Grande, estado Vargas: una ventana a la geología de la Cordillera de la Costa—guía de excursión (Excursiones Geológicas N° 02-1)). Sociedad Venezolana de Geólogos, Comité Metropolitano de Excursiones, Caracas

  • Urbani F (2002b) Geology of the highway area and old road Caracas—La Guaira, Capital District and Vargas State: excursion guide (Geología del área de la autopista y carretera vieja Caracas—La Guaira, Distrito Capital y estado Vargas: guía de excursión). Geos (Caracas, Escuela de Geologìa Y Minas, Universidad Central de Venezuela) 35:1–75

    Google Scholar 

  • Urbani F (2002c) Geology of the Vargas State and the igneous-metamorphic units of the Coastal Mountain Range (Geología del estado Vargas y las unidades ígneo-metamórficas de la Cordillera de la Costa). In: Memorias del III Coloquio sobre Microzonificación Sísmica y III Jornadas de Sismología Histórica (Colección Serie Técnica Nº 2). Fundación Venezolana de Investigaciones Sismológicas, Caracas, pp 236–240

  • Urbani F (2002d) Nomenclature of the igneous and metamorphic rock units of the Coastal Mountain Range, Venezuela (Nomenclatura de las unidades de rocas ígneas y metamórficas de la Cordillera de la Costa, Venezuela). Geos (Caracas, Escuela de Geologìa Y Minas, Universidad Central de Venezuela) 35:1–83

    Google Scholar 

  • Urbani F, Rodríguez J, Barboza L, Rodríguez S, Cano V, Melo L, Castillo A, Suárez J, Vivas V, Fournier H (2006) Geology of the Vargas State, Venezuela (Geología del estado Vargas, Venezuela). In: López J, García R (eds) Los aludes torrenciales de Diciembre 1999 en Venezuela. Instituto de Mecánica de Fluidos, Facultad de Ingeniería, Universidad Central de Venezuela, Caracas, pp 133–156

    Google Scholar 

  • Vallance JW, Scott KM (1997) The Osceola Mudflow from Mount Rainier: Sedimentology and hazard implications of a huge clay-rich debris flow. Geol Soc Am Bull 109(2):143–163. https://doi.org/10.1130/0016-7606(1997)109<0143:TOMFMR>2.3.CO;2

    Article  Google Scholar 

  • van Steijn H (1996) Debris-flow magnitude—frequency relationships for mountainous regions of Central and Northwest Europe. Geomorphology 15(3–4):259–273. https://doi.org/10.1016/0169-555X(95)00074-F

    Article  Google Scholar 

  • Vareschi V (1992) Ecology of the tropical vegetation: with special attention to research in Venezuela (Ecología de la vegetación tropical: con especial atención a investigaciones en Venezuela). Sociedad Venezolana de Ciencias Naturales, Caracas

    Google Scholar 

  • Wei Z, Shang Y, Zhao Y, Pan P, Jiang Y (2017) Rainfall threshold for initiation of channelized debris flows in a small catchment based on in-site measurement. Eng Geol 217:23–34. https://doi.org/10.1016/j.enggeo.2016.12.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the Fondo para el Desarrollo de la Investigación (FONDEIN) of the Universidad Pedagógica Experimental Libertador – Instituto Pedagógico de Caracas (UPEL-IPC) (Caracas, Venezuela), for the financial support of the research project from which this paper has been derived. We would like also to thank the editorial handling, Rachid Seqqat and two anonymous reviewers for the significant improvement of an earlier version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Williams Méndez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez, W., Córdova, J., de Guenni, L.B. et al. Predictive models to estimate sediment volumes deposited by debris flows (Vargas state, Venezuela): an adjustment of multivariate statistical techniques. Environ Earth Sci 78, 350 (2019). https://doi.org/10.1007/s12665-019-8346-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8346-5

Keywords

Profiles

  1. Lelys Bravo de Guenni
  2. Theofilos Toulkeridis