Altitudinal and temporal evapotranspiration dynamics via remote sensing and vegetation index-based modelling over a scarce-monitored, high-altitudinal Andean páramo ecosystem of Southern Ecuador

Abstract

In the tropical Andes, the páramo ecosystem is known as water towers and the main water supplier for the cities of the Andean region. Nevertheless, considering that evapotranspiration (ET) is the major water loss and the lack of in situ evapotranspiration measurements in high altitudinal páramo ecosystems, ET dynamics on the hydrological regulation remains largely unexplored. Therefore, to close this gap, we focused on a remote sensing approach. This study addressed the altitudinal and temporal dynamics of actual evapotranspiration using a crop coefficient based on a Vegetation Index (VI) model. Enhanced Vegetation Index (EVI), Normalized Difference Vegetation Index (NDVI) and Soil-Adjusted Vegetation Index (SAVI) retrieved from Landsat imagery were evaluated. Four remote sensing images and ground-level meteorological data for a 10-month period were used to create ET maps from each VI. A cubic spline interpolation was used to obtain daily ET time series between two satellite overpass dates. Aggregated monthly values were used to validate against ET calculated from water balance. Results revealed that EVI-based ET outperformed the other VI-based ET. The results showed 30% of subestimation (Pbias%) in relation to the water balance. For upgraded results, an extended satellite images time series and a fine calibration are needed. Regarding the altitudinal variability, ET exhibited a strong dependence on land cover characteristics. Our work provides a plausible method to estimate ET in páramo ecosystems in the absence of ET measurements and with a scarcity of clear sky images, further evaluation is necessary to improve ET estimations using remote sensing in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Al Zayed IS, Elagib NA, Ribbe L, Heinrich J (2016) Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: a comparative study. Agric Water Manag 177:66–76. https://doi.org/10.1016/j.agwat.2016.06.027

    Article  Google Scholar 

  2. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56. FAO, Rome

    Google Scholar 

  3. Allen R, Pereira LS, Raes D, Smith M (2006) Evapotranspiración del cultivo. Guías para la determinación de los requerimientos de agua de los cultivos. FAO, Roma

    Google Scholar 

  4. Allen RG, Tasumi M, Morse A et al (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—applications. J Irrig Drain Eng 133:395–406. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(395)

    Article  Google Scholar 

  5. Allen R, Irmak A, Trezza R et al (2011a) Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol Process 25:4011–4027. https://doi.org/10.1002/hyp.8408

    Article  Google Scholar 

  6. Allen RG, Pereira LS, Howell TA, Jensen ME (2011b) Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric Water Manag 98:899–920. https://doi.org/10.1016/j.agwat.2010.12.015

    Article  Google Scholar 

  7. Baille M, Baille A, Laury JC (1994) A simplified model for predicting evapotranspiration rate of nine ornamental species vs. climate factors and leaf area. Sci Hortic (Amsterdam) 59:217–232. https://doi.org/10.1016/0304-4238(94)90015-9

    Article  Google Scholar 

  8. Bastiaanssen WGM (1995) Regionalization of surface flux densities and moisture indicators in composite terrain: a remote sensing approach under clear skies in Mediterranean climates. Wageningen Agricultural University, Wageningen

    Google Scholar 

  9. Bausch WC, Neale CMU (1987) Crop coefficients derived from reflected canopy radiation: a concept. Am Soc Agric Eng Trans TAAEAJ 30:703–709. https://doi.org/10.13031/2013.30463

    Article  Google Scholar 

  10. Borja P, Iñiguez V, Crespo P, et al (2008) Características físico químicas de histosoles y andosoles de los páramos de quimsacocha, Ecuador. In: XI Congreso Ecuatoriano de la Ciencia del Suelo. Quito, pp 29–31

  11. Buytaert W, Beven K (2011) Models as multiple working hypotheses: hydrological simulation of tropical alpine wetlands. Hydrol Process 25:1784–1799. https://doi.org/10.1002/hyp.7936

    Article  Google Scholar 

  12. Buytaert W, Célleri R, De Bièvre B, Cisneros F (2006) Hidrología del Páramo andino: propiedades, importancia y vulnerabilidad. pp 1–26

  13. Cabrera Balarezo JJ, Timbe Castro LM (2017) Evaluación del modelo HEC-HMS para la simulación hidrológica de una cuenca de páramo. Universidad de Cuenca

  14. Cammalleri C, Anderson MC, Gao F et al (2013) A data fusion approach for mapping daily evapotranspiration at field scale. Water Resour Res 49:4672–4686. https://doi.org/10.1002/wrcr.20349

    Article  Google Scholar 

  15. Cammalleri C, Anderson MC, Gao F et al (2014) Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agric For Meteorol 186:1–11. https://doi.org/10.1016/j.agrformet.2013.11.001

    Article  Google Scholar 

  16. Campos I, Neale CMU, Calera A et al (2010) Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agric Water Manag 98:45–54. https://doi.org/10.1016/j.agwat.2010.07.011

    Article  Google Scholar 

  17. Cardenas Agudelo MF (2016) Ecohydrology of paramos in Colombia: Vulnerability to climate change and land use. Universidad Nacional de Colombia

  18. Cárdenas MF, Tobón C, Buytaert W (2017) Contribution of occult precipitation to the water balance of páramo ecosystems in the Colombian Andes. Hydrol Process 31:4440–4449. https://doi.org/10.1002/hyp.11374

    Article  Google Scholar 

  19. Carrillo-Rojas G, Silva B, Córdova M et al (2016) Dynamic mapping of evapotranspiration using an energy balance-based model over an andean páramo catchment of southern Ecuador. Remote Sens 8:160. https://doi.org/10.3390/rs8020160

    Article  Google Scholar 

  20. Carrillo-rojas G, Silva B, Rollenbeck R et al (2019) Agricultural and forest meteorology the breathing of the Andean Highlands: net ecosystem exchange and evapotranspiration over the páramo of southern Ecuador. Agric For Meteorol 265:30–47. https://doi.org/10.1016/j.agrformet.2018.11.006

    Article  Google Scholar 

  21. Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113:1–24

    Article  Google Scholar 

  22. Choudhury B, Ahmed N, Idso S et al (1994) Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sens Environ 50:1–17. https://doi.org/10.1016/0034-4257(94)90090-6

    Article  Google Scholar 

  23. Coners H, Babel W, Willinghöfer S et al (2016) Evapotranspiration and water balance of high-elevation grassland on the Tibetan Plateau. J Hydrol 533:557–566. https://doi.org/10.1016/j.jhydrol.2015.12.021

    Article  Google Scholar 

  24. Córdova M, Carrillo-Rojas G, Crespo P et al (2015) Evaluation of the Penman-Monteith (FAO 56 PM) method for calculating reference evapotranspiration using limited data. Mt Res Dev 35:230–239. https://doi.org/10.1659/MRD-JOURNAL-D-14-0024.1

    Article  Google Scholar 

  25. Córdova M, Célleri R, Shellito CJ et al (2016) Near-surface air temperature lapse rate over complex terrain in the southern Ecuadorian Andes: implications for temperature mapping. Arctic Antarct Alp Res 48:678–684. https://doi.org/10.1657/AAAR0015-077

    Article  Google Scholar 

  26. Costa MH, Biajoli MC, Sanches L et al (2010) Atmospheric versus vegetation controls of Amazonian tropical rain forest evapotranspiration: are the wet and seasonally dry rain forests any different? J Geophys Res 115:G04021. https://doi.org/10.1029/2009JG001179

    Article  Google Scholar 

  27. Crespo PJ, Feyen J, Buytaert W et al (2011) Identifying controls of the rainfall–runoff response of small catchments in the tropical Andes (Ecuador). J Hydrol 407:164–174. https://doi.org/10.1016/j.jhydrol.2011.07.021

    Article  Google Scholar 

  28. Crespo P, Célleri R, Buytaert W et al (2014) Impactos del cambio de uso de la tierra sobre la hidrología de los páramos húmedos andinos. CONDESAN

  29. Dias LCP, Macedo MN, Costa MH et al (2015) Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil. J Hydrol Reg Stud 4:108–122. https://doi.org/10.1016/j.ejrh.2015.05.010

    Article  Google Scholar 

  30. Dorji U, Olesen JE, Seidenkrantz MS (2016) Water balance in the complex mountainous terrain of Bhutan and linkages to land use. J Hydrol Reg Stud 7:55–68. https://doi.org/10.1016/j.ejrh.2016.05.001

    Article  Google Scholar 

  31. Duchemin B, Hadria R, Erraki S et al (2006) Monitoring wheat phenology and irrigation in Central Morocco: on the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric Water Manag 79:1–27. https://doi.org/10.1016/j.agwat.2005.02.013

    Article  Google Scholar 

  32. Er-Raki S, Chehbouni A, Duchemin B (2010) Combining satellite remote sensing data with the FAO-56 dual approach for water use mapping in irrigated wheat fields of a semi-arid region. Remote Sens 2:375–387. https://doi.org/10.3390/rs2010375

    Article  Google Scholar 

  33. FAO, ISRIC, ISSS (1998) World reference base for soil resources. World Soil Resources Reports 84. Food and Agricultural Organisation of the United Nations, Rome

    Google Scholar 

  34. Farley KA, Jobbagy EG, Jackson RB (2005) Effects of afforestation on water yield: a global synthesis with implications for policy. Glob Change Biol 11:1565–1576. https://doi.org/10.1111/j.1365-2486.2005.01011.x

    Article  Google Scholar 

  35. Gil Morales EG, Tobón Marín C (2016) Hydrological modelling with TOPMODEL of Chingaza páramo, Colombia. Rev Fac Nac Agron 69:7919–7933. https://doi.org/10.15446/rfna.v69n2.59137

    Article  Google Scholar 

  36. Glenn EP, Huete AR, Nagler PL et al (2007) Integrating remote sensing and ground methods to estimate evapotranspiration. CRC Crit Rev Plant Sci 26:139–168. https://doi.org/10.1080/07352680701402503

    Article  Google Scholar 

  37. Glenn EP, Morino K, Didan K et al (2008) Scaling sap flux measurements of grazed and ungrazed shrub communities with fine and coarse-resolution remote sensing. Ecohydrology 1:316–329. https://doi.org/10.1002/eco.19

    Article  Google Scholar 

  38. Glenn EP, Nagler PL, Huete AR (2010) Vegetation index methods for estimating evapotranspiration by remote sensing. Surv Geophys 31:531–555. https://doi.org/10.1007/s10712-010-9102-2

    Article  Google Scholar 

  39. Glenn EP, Neale CMU, Hunsaker DJ, Nagler PL (2011) Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrol Process 25:4050–4062. https://doi.org/10.1002/hyp.8392

    Article  Google Scholar 

  40. Glenn EP, Mexicano L, Garcia-Hernandez J et al (2013) Evapotranspiration and water balance of an anthropogenic coastal desert wetland: responses to fire, inflows and salinities. Ecol Eng 59:176–184. https://doi.org/10.1016/j.ecoleng.2012.06.043

    Article  Google Scholar 

  41. González AR, Guillermo J, Rodríguez M et al (2011) Uso de sensores remotos para estimar la evapotranspiración de cultivos en la comarca lagunera. Agrofaz 13:23–31

    Google Scholar 

  42. Granier A, Huc R, Barigah ST (1996) Transpiration of natural rain forest and its dependence on climatic factors. Agric For Meteorol 78:19–29

    Article  Google Scholar 

  43. Guio CM, Brito VM, Crespo P, Ließ M (2018) Spatial prediction of soil water retention in a Páramo landscape: methodological insight into machine learning using random forest. Geoderma 316:100–114. https://doi.org/10.1016/j.geoderma.2017.12.002

    Article  Google Scholar 

  44. Hall ML, Calle J (1982) Geochronological control for the main tectonic-magmatic events of Ecuador. Earth Sci Rev 18:215–239

    Article  Google Scholar 

  45. Hantson S, Chuvieco E, Pons X et al (2011) Cadena de pre-procesamiento estándar para las imágenes Landsat del Plan Nacional de Teledetección. Rev Teledetec 36:51–61

    Google Scholar 

  46. Helman D, Givati A, Lensky IM (2015) Annual evapotranspiration retrieved from satellite vegetation indices for the eastern Mediterranean at 250 m spatial resolution. Atmos Chem Phys 15:12567–12579. https://doi.org/10.5194/acp-15-12567-2015

    Article  Google Scholar 

  47. Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sens Environ 25:295–309. https://doi.org/10.1016/0034-4257(88)90106-X

    Article  Google Scholar 

  48. Huete A, Didan K, Miura T et al (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213. https://doi.org/10.1016/S0034-4257(02)00096-2

    Article  Google Scholar 

  49. Iñiguez V, Morales O, Cisneros F et al (2016) Analysis of the drought recovery of Andosols on southern Ecuadorian Andean páramos. Hydrol Earth Syst Sci 20:2421–2435. https://doi.org/10.5194/hess-20-2421-2016

    Article  Google Scholar 

  50. Jayanthi H, Neale CMU, Wright JL (2007) Development and validation of canopy reflectance-based crop coefficient for potato. Agric Water Manag 88:235–246. https://doi.org/10.1016/j.agwat.2006.10.020

    Article  Google Scholar 

  51. Kamble B, Irmak A, Martin D et al (2013) Satellite-based energy balance approach to assess riparian water use. Evapotranspiration—an overvilew. InTech, Rijeka, pp 79–95

    Google Scholar 

  52. Karimi P, Bastiaanssen WGM (2014) Spatial evapotranspiration, rainfall and land use data in water accounting—part 1: review of the accuracy of the remote sensing data. Hydrol Earth Syst Sci Discuss 11:1073–1123. https://doi.org/10.5194/hessd-11-1073-2014

    Article  Google Scholar 

  53. Kjaersgaard J, Allen R, Irmak A (2011) Improved methods for estimating monthly and growing season ET using METRIC applied to moderate resolution satellite imagery. Hydrol Process 25:4028–4036. https://doi.org/10.1002/hyp.8394

    Article  Google Scholar 

  54. Kjaersgaard J, Richard A, Trezza R et al (2012) Filling satellite image cloud gaps to create complete images of evapotranspiration. IAHS Publication, Wallingford, pp 102–105

    Google Scholar 

  55. Liou Y, Kar S (2014) Evapotranspiration estimation with remote sensing and various surface energy balance algorithms—a review. Energies 7:2821–2849. https://doi.org/10.3390/en7052821

    Article  Google Scholar 

  56. Llambí LD, Soto-W A, Célleri R et al (2012) Ecología, hidrología y suelos de páramos. Proyecto páramo Andino. Universidad de Los Andes, Bogota

    Google Scholar 

  57. Madriñán S, Cortés AJ, Richardson JE (2013) Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Front Genet 4:1–7. https://doi.org/10.3389/fgene.2013.00192

    Article  Google Scholar 

  58. Molina A, Vanacker V, Brisson E et al (2015) Long-term effects of climate and land cover change on freshwater provision in the tropical Andes. Hydrol Earth Syst Sci Discuss 12:5219–5250. https://doi.org/10.5194/hessd-12-5219-2015

    Article  Google Scholar 

  59. Mosquera G, Lazo P, Cárdenas I, Crespo P (2012) Identificación de las principales fuentes de agua que aportan a la generación de escorrentía en zonas Andinas de páramo húmedo: mediante el uso de los isótopos estables deuterio (δ 2 H) y oxígeno- 18 (δ 18 O). Maskana 3:87–105

    Article  Google Scholar 

  60. Mosquera GM, Lazo PX, Célleri R et al (2015) Runoff from tropical alpine grasslands increases with areal extent of wetlands. CATENA 125:120–128. https://doi.org/10.1016/j.catena.2014.10.010

    Article  Google Scholar 

  61. Mosquera GM, Célleri R, Lazo PX et al (2016) Combined use of isotopic and hydrometric data to conceptualize ecohydrological processes in a high-elevation tropical ecosystem. Hydrol Process 30:2930–2947. https://doi.org/10.1002/hyp.10927

    Article  Google Scholar 

  62. Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800. https://doi.org/10.1016/j.rse.2011.02.019

    Article  Google Scholar 

  63. Nagler PL, Cleverly J, Glenn E et al (2005) Predicting riparian evapotranspiration from MODIS vegetation indices and meteorological data. Remote Sens Environ 94:17–30. https://doi.org/10.1016/j.rse.2004.08.009

    Article  Google Scholar 

  64. Nagler P, Glenn E, Nguyen U et al (2013) Estimating riparian and agricultural actual evapotranspiration by reference evapotranspiration and MODIS Enhanced Vegetation Index. Remote Sens 5:3849–3871. https://doi.org/10.3390/rs5083849

    Article  Google Scholar 

  65. Nouri H, Glenn E, Beecham S et al (2016) Comparing three approaches of evapotranspiration estimation in mixed urban vegetation: field-based, remote sensing-based and observational-based methods. Remote Sens 8:492. https://doi.org/10.3390/rs8060492

    Article  Google Scholar 

  66. Ochoa-Sánchez A, Crespo P, Célleri R (2018) Quantification of rainfall interception in the high Andean tussock grasslands. Ecohydrology 11:e1946. https://doi.org/10.1002/eco.1946

    Article  Google Scholar 

  67. Ochoa-Tocachi BF, Buytaert W, De Bièvre B et al (2016) Impacts of land use on the hydrological response of tropical Andean catchments. Hydrol Process 30:4074–4089. https://doi.org/10.1002/hyp.10980

    Article  Google Scholar 

  68. Pesántez J, Mosquera GM, Crespo P et al (2018) Effect of land cover and hydro-meteorological controls on soil water DOC concentrations in a high-elevation tropical environment. Hydrol Process 32:2624–2635. https://doi.org/10.1002/hyp.13224

    Article  Google Scholar 

  69. Pôças I, Cunha M, Pereira LS, Allen RG (2013) Using remote sensing energy balance and evapotranspiration to characterize montane landscape vegetation with focus on grass and pasture lands. Int J Appl Earth Obs Geoinf 21:159–172. https://doi.org/10.1016/j.jag.2012.08.017

    Article  Google Scholar 

  70. Quichimbo P, Tenorio G, Borja P et al (2012) Efectos sobre las propiedades físicas y químicas de los suelos por el cambio de cobertura vegetal y uso del suelo: Páramo de Quimsacocha al sur del Ecuador. Suelos Ecuat 42:138–153

    Google Scholar 

  71. Ramírez DA, Valladares F, Blasco A, Bellot J (2006) Assessing transpiration in the tussock grass Stipa tenacissima L.: the crucial role of the interplay between morphology and physiology. Acta Oecol 30:386–398. https://doi.org/10.1016/j.actao.2006.06.006

    Article  Google Scholar 

  72. Ramón Flores JD (2018) Identificación de fuentes de generación de escorrentía en los Andes tropicales: estudio de múltiples modelos basados en trazadores. Universidad de Cuenca. Retrieved from http://dspace.ucuenca.edu.ec/handle/123456789/31354

  73. Richardson M, Ketcheson S, Whittington P, Price J (2012) The influences of catchment geomorphology and scale on runoff generation in a northern peatland complex. Hydrol Process 26:1805–1817. https://doi.org/10.1002/hyp.9322

    Article  Google Scholar 

  74. Rodbell DT, Bagnato S, Nebolini JC, Abbott MB (2002) A late glacial—holocene tephrochronology for glacial lakes in southern Ecuador. Quat Res 57:343–354. https://doi.org/10.1006/qres.2002.2324

    Article  Google Scholar 

  75. Rossato L, Alvala RCS, Ferreira NJ, Tomasella J (2005) Evapotranspiration estimation in the Brazil using NDVI data. In: SPIE 5976, Remote Sensing for Agriculture, Ecosystems, and Hydrology VII. Bruges, Belgium

  76. Rouse JW, Hass RH, Schell JA, Deering DW (1972) Monitoring Vegetation Systems in the Great Plains with ERTS. Third Earth Resources Technology Satellite Symposium

  77. Saadi S, Simonneaux V, Boulet G et al (2015) Monitoring irrigation consumption using high resolution NDVI image time series: calibration and validation in the Kairouan Plain (Tunisia). Remote Sens 7:13005–13028. https://doi.org/10.3390/rs71013005

    Article  Google Scholar 

  78. Sarmiento L (2000) Water balance and soil loss under long fallow agriculture in the Venezuelan Andes. Mt Res Dev 20:2246–2253

    Google Scholar 

  79. Silva B, Álava-Núñez P, Strobl S et al (2017) Area-wide evapotranspiration monitoring at the crown level of a tropical mountain rain forest. Remote Sens Environ 194:219–229. https://doi.org/10.1016/j.rse.2017.03.023

    Article  Google Scholar 

  80. Sutanto SJ, Wenninger J, Coenders-Gerrits AMJ, Uhlenbrook S (2012) Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model. Hydrol Earth Syst Sci 16:2605–2616. https://doi.org/10.5194/hess-16-2605-2012

    Article  Google Scholar 

  81. Tsiko CT, Makurira H, Gerrits AMJ, Savenije HHG (2012) Measuring forest floor and canopy interception in a savannah ecosystem. Phys Chem Earth 47–48:122–127. https://doi.org/10.1016/j.pce.2011.06.009

    Article  Google Scholar 

  82. Van Der Hammen T, Hooghiemstra H (2000) Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quat Sci Rev 19:725–742. https://doi.org/10.1016/S0277-3791(99)00024-4

    Article  Google Scholar 

  83. Wever LA, Flanagan LB, Carlson PJ (2002) Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agric For Meteorol 112:31–49. https://doi.org/10.1016/S0168-1923(02)00041-2

    Article  Google Scholar 

  84. Zhang F, Zhou G, Wang Y et al (2012) Evapotranspiration and crop coefficient for a temperate desert steppe ecosystem using eddy covariance in Inner Mongolia, China. Hydrol Process 26:379–386. https://doi.org/10.1002/hyp.8136

    Article  Google Scholar 

  85. Zhang H, Anderson RG, Wang D (2015) Satellite-based crop coefficient and regional water use estimates for Hawaiian sugarcane. F Crop Res 180:143–154. https://doi.org/10.1016/j.fcr.2015.05.023

    Article  Google Scholar 

Download references

Acknowledgements

This manuscript is an outcome of the University of Cuenca’s Master Program in Ecohydrology. This work was funded by the Project XIII–Conc: “Estudio Comparativo de Métodos de Estimación de Evapotranspiración Actual en Suelos Húmedos de una Micro cuenca de Páramo Andino” of the Research Office of the University of Cuenca (DIUC). We are grateful for the economic support. We thank the Municipal Company of Telecommunications, Drinking Water, Sewage and Sanitation of Cuenca (ETAPA-EP) and the Ecuadorian Secretary of Higher Education, Science, Technology and Innovation for their cooperation. We thank the Ministry of Environment of Ecuador (MAE) for the research permissions. We thank Sarah Schob and Dr. David Windhorst for providing us the Quinoas land-cover map through the project DFG PAK 825/1 subproject C7 (BR 2238/14-1), and we thank the Laboratory for Climatology and Remote Sensing, Philipps-Universität Marburg (through the project DFG PAK823–825 subproject C6 (BE1780/38–1) which supported our study in knowledge transfer. Finally, we are grateful to technical staff of the Department of Water Resources and Environmental Sciences of the University of Cuenca who contributed to the stream flow and meteorological monitoring.

Author information

Affiliations

Authors

Contributions

GC and DB conceived and designed the experiment. PC and JJC provided support in the hydrological modeling and analyses. MR performed the experiment, analyzed the data and wrote the paper with contributions from all co-authors.

Corresponding author

Correspondence to Mayra Ramón-Reinozo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramón-Reinozo, M., Ballari, D., Cabrera, J.J. et al. Altitudinal and temporal evapotranspiration dynamics via remote sensing and vegetation index-based modelling over a scarce-monitored, high-altitudinal Andean páramo ecosystem of Southern Ecuador. Environ Earth Sci 78, 340 (2019). https://doi.org/10.1007/s12665-019-8337-6

Download citation

Keywords

  • Evapotranspiration
  • Ecuador
  • Crop coefficient
  • Páramo
  • Remote sensing