An interactive visual analysis tool for investigating teleconnections in climate simulations


Teleconnections refer to links between regions that are distant to each other, but nevertheless exhibit some relation. The study of such teleconnections is a well-known task in climate research. Climate simulation shall model known teleconnections. Detecting teleconnections in climate simulations is a crucial aspect in judging the quality of the simulation output. It is common practice to run scripts to execute a sequence of analysis steps on the climate simulations to search for teleconnections. Such a scripting approach is not flexible and targeted towards one specific goal. It is desirable to have one tool that allows for a flexible analysis of all teleconnection patterns with a dataset. We present such a tool, where the extracted information is provided in an intuitive visual form to users, who then can interactively explore the data. We developed an analysis workflow that is modeled around four views showing different facets of the data with coordinated interaction. We present a teleconnection study with simulation ensembles and reanalysis data obtained by data assimilation to observe how well the teleconnectivity patterns match and to demonstrate the effectiveness of our tool.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115(6):1083–1126

    Article  Google Scholar 

  2. Brewer CA (2003) Colorbrewer. Accessed 2016

  3. Clement AC, Seager R, Cane MA (1999) Orbital controls on the el niño/southern oscillation and the tropical climate. Paleoceanography 14(4):441–456.

    Article  Google Scholar 

  4. Climate Reanalyzer (2011) Climate Change Institute, University of Maine, USA. Accessed 2016

  5. Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100-year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87(2):175–190

    Article  Google Scholar 

  6. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28

    Article  Google Scholar 

  7. Hurrell JW (1995) Decadal trends in the north atlantic oscillation: regional temperatures and precipitation. Science 269(5224):676–679.

    Article  Google Scholar 

  8. Jungclaus JH, Lorenz SJ, Timmreck C, Reick CH, Brovkin V, Six K, Segschneider J, Giorgetta MA, Crowley TJ, Pongratz J, Krivova NA, Vieira LE, Solanki SK, Klocke D, Botzet M, Esch M, Gayler V, Haak H, Raddatz TJ, Roeckner E, Schnur R, Widmann H, Claussen M, Stevens B, Marotzke J (2010) Climate and carbon-cycle variability over the last millennium. Clim Past 6(5):723–737

    Article  Google Scholar 

  9. Kitoh A, Murakami S (2002) Tropical pacific climate at the mid-holocene and the last glacial maximum simulated by a coupled ocean-atmosphere general circulation model. Paleoceanography 17(3):19-1–19-13. (1047)

    Article  Google Scholar 

  10. KNMI Climate Explorer (2013) Royal Netherlands Meteorological Institute (KNMI). Accessed 2016

  11. Lohmann G (2017) Atmospheric bridge on orbital time scales. Theor Appl Climatol 128(3):709–718.

    Article  Google Scholar 

  12. Marsland SJ, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5(2):91–127

    Article  Google Scholar 

  13. NCEP (2011) The 20th century reanalysis project database, version 2, ESRL NOAA. Accessed 2016

  14. Nocke T, Buschmann S, Donges JF, Marwan N, Schulz HJ, Tominski C (2015) Review: visual analytics of climate networks. Nonlinear Process Geophys 22(5):545–570. Accessed 2016

    Article  Google Scholar 

  15. PSD Web Products and Tools (2019) ESRL NOAA. Accessed 2016

  16. Raddatz TJ, Reick CH, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler KG, Wetzel P, Jungclaus J (2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century. Clim Dyn 29(6):565–574

    Article  Google Scholar 

  17. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5, Part I: model description. Max Planck Inst Meteorol Rep 349:1–127

    Google Scholar 

  18. Sammon JW Jr (1969) A nonlinear mapping for data structure analysis. IEEE Trans Comput C–18(5):401–409

    Article  Google Scholar 

  19. Steed CA, Ricciuto DM, Shipman G, Smith B, Thornton PE, Wang D, Shi X, Williams DN (2013) Big data visual analytics for exploratory earth system simulation analysis. Comput Geosci 61:71–82

    Article  Google Scholar 

  20. Thompson DWJ, Wallace JM (1998) The arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25(9):1297–1300.

    Article  Google Scholar 

  21. Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chappell J, Ellam RM, Lea DW, Lough JM, Shimmield GB (2001) Variability in the el nino-southern oscillation through a glacial-interglacial cycle. Science 291(5508):1511–1517.

    Article  Google Scholar 

  22. van den Dool HM, Saha S, Johansson A (2000) Empirical orthogonal teleconnections. J Clim 13(8):1421–1435.<1421:EOT>2.0.CO;2

    Article  Google Scholar 

  23. von Storch H, Zwiers FW (2002) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Google Scholar 

  24. Walker G, Bliss E (1932) World weather v. Mem R Meteorol Soc 4(36):53–84

    Google Scholar 

  25. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Weather Rev 109:784–812

    Article  Google Scholar 

  26. Wetzel P, Maier-Reimer E, Botzet M, Jungclaus J, Keenlyside N, Latif M (2006) Effects of ocean biology on the penetrative radiation in a coupled climate model. J Clim 19(16):3973–3987

    Article  Google Scholar 

  27. Whitaker JS, Compo GP, Wei X, Hamill TM (2004) Reanalysis without radiosondes using ensemble data assimilation. Mon Weather Rev 132(5):1190–1200

    Article  Google Scholar 

Download references


This work was funded by Helmholtz Association as a part of Earth System Science Research School, as well as the REKLIM and PACES programmes.

Author information



Corresponding author

Correspondence to Lars Linsen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a Topical Collection in Environmental Earth Sciences on “Visual Data Exploration”, guest edited by Karsten Rink, Roxana Bujack, Stefan Jänicke, and Dirk Zeckzer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antonov, A., Lohmann, G., Ionita, M. et al. An interactive visual analysis tool for investigating teleconnections in climate simulations. Environ Earth Sci 78, 294 (2019).

Download citation


  • Interactive visual analysis
  • Teleconnections
  • Coordinated views
  • Spatial data visualization
  • Multidimensional data projection
  • Segmentation