Advertisement

An interactive visual analysis tool for investigating teleconnections in climate simulations

  • Anatoliy Antonov
  • Gerrit Lohmann
  • Monica Ionita
  • Mihai Dima
  • Lars LinsenEmail author
Thematic Issue
Part of the following topical collections:
  1. Visual Data Exploration

Abstract

Teleconnections refer to links between regions that are distant to each other, but nevertheless exhibit some relation. The study of such teleconnections is a well-known task in climate research. Climate simulation shall model known teleconnections. Detecting teleconnections in climate simulations is a crucial aspect in judging the quality of the simulation output. It is common practice to run scripts to execute a sequence of analysis steps on the climate simulations to search for teleconnections. Such a scripting approach is not flexible and targeted towards one specific goal. It is desirable to have one tool that allows for a flexible analysis of all teleconnection patterns with a dataset. We present such a tool, where the extracted information is provided in an intuitive visual form to users, who then can interactively explore the data. We developed an analysis workflow that is modeled around four views showing different facets of the data with coordinated interaction. We present a teleconnection study with simulation ensembles and reanalysis data obtained by data assimilation to observe how well the teleconnectivity patterns match and to demonstrate the effectiveness of our tool.

Keywords

Interactive visual analysis Teleconnections Coordinated views Spatial data visualization Multidimensional data projection Segmentation 

Notes

Acknowledgements

This work was funded by Helmholtz Association as a part of Earth System Science Research School, as well as the REKLIM and PACES programmes.

References

  1. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115(6):1083–1126CrossRefGoogle Scholar
  2. Brewer CA (2003) Colorbrewer. http://colorbrewer2.org. Accessed 2016
  3. Clement AC, Seager R, Cane MA (1999) Orbital controls on the el niño/southern oscillation and the tropical climate. Paleoceanography 14(4):441–456.  https://doi.org/10.1029/1999PA900013 CrossRefGoogle Scholar
  4. Climate Reanalyzer (2011) Climate Change Institute, University of Maine, USA. http://cci-reanalyzer.org/. Accessed 2016
  5. Compo GP, Whitaker JS, Sardeshmukh PD (2006) Feasibility of a 100-year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87(2):175–190CrossRefGoogle Scholar
  6. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28CrossRefGoogle Scholar
  7. Hurrell JW (1995) Decadal trends in the north atlantic oscillation: regional temperatures and precipitation. Science 269(5224):676–679.  https://doi.org/10.1126/science.269.5224.676 CrossRefGoogle Scholar
  8. Jungclaus JH, Lorenz SJ, Timmreck C, Reick CH, Brovkin V, Six K, Segschneider J, Giorgetta MA, Crowley TJ, Pongratz J, Krivova NA, Vieira LE, Solanki SK, Klocke D, Botzet M, Esch M, Gayler V, Haak H, Raddatz TJ, Roeckner E, Schnur R, Widmann H, Claussen M, Stevens B, Marotzke J (2010) Climate and carbon-cycle variability over the last millennium. Clim Past 6(5):723–737CrossRefGoogle Scholar
  9. Kitoh A, Murakami S (2002) Tropical pacific climate at the mid-holocene and the last glacial maximum simulated by a coupled ocean-atmosphere general circulation model. Paleoceanography 17(3):19-1–19-13.  https://doi.org/10.1029/2001PA000724 (1047)CrossRefGoogle Scholar
  10. KNMI Climate Explorer (2013) Royal Netherlands Meteorological Institute (KNMI). https://climexp.knmi.nl/. Accessed 2016
  11. Lohmann G (2017) Atmospheric bridge on orbital time scales. Theor Appl Climatol 128(3):709–718.  https://doi.org/10.1007/s00704-015-1725-2 CrossRefGoogle Scholar
  12. Marsland SJ, Haak H, Jungclaus JH, Latif M, Röske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5(2):91–127CrossRefGoogle Scholar
  13. NCEP (2011) The 20th century reanalysis project database, version 2, ESRL NOAA. http://www.esrl.noaa.gov/psd/data/20thC_Rean. Accessed 2016
  14. Nocke T, Buschmann S, Donges JF, Marwan N, Schulz HJ, Tominski C (2015) Review: visual analytics of climate networks. Nonlinear Process Geophys 22(5):545–570.  https://doi.org/10.5194/npg-22-545-2015. https://www.nonlin-processes-geophys.net/22/545/2015/. Accessed 2016CrossRefGoogle Scholar
  15. PSD Web Products and Tools (2019) ESRL NOAA. http://www.esrl.noaa.gov/psd/products. Accessed 2016
  16. Raddatz TJ, Reick CH, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler KG, Wetzel P, Jungclaus J (2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century. Clim Dyn 29(6):565–574CrossRefGoogle Scholar
  17. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5, Part I: model description. Max Planck Inst Meteorol Rep 349:1–127Google Scholar
  18. Sammon JW Jr (1969) A nonlinear mapping for data structure analysis. IEEE Trans Comput C–18(5):401–409CrossRefGoogle Scholar
  19. Steed CA, Ricciuto DM, Shipman G, Smith B, Thornton PE, Wang D, Shi X, Williams DN (2013) Big data visual analytics for exploratory earth system simulation analysis. Comput Geosci 61:71–82CrossRefGoogle Scholar
  20. Thompson DWJ, Wallace JM (1998) The arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25(9):1297–1300.  https://doi.org/10.1029/98GL00950 CrossRefGoogle Scholar
  21. Tudhope AW, Chilcott CP, McCulloch MT, Cook ER, Chappell J, Ellam RM, Lea DW, Lough JM, Shimmield GB (2001) Variability in the el nino-southern oscillation through a glacial-interglacial cycle. Science 291(5508):1511–1517.  https://doi.org/10.1126/science.1057969 CrossRefGoogle Scholar
  22. van den Dool HM, Saha S, Johansson A (2000) Empirical orthogonal teleconnections. J Clim 13(8):1421–1435.  https://doi.org/10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2 CrossRefGoogle Scholar
  23. von Storch H, Zwiers FW (2002) Statistical analysis in climate research. Cambridge University Press, CambridgeGoogle Scholar
  24. Walker G, Bliss E (1932) World weather v. Mem R Meteorol Soc 4(36):53–84Google Scholar
  25. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Weather Rev 109:784–812CrossRefGoogle Scholar
  26. Wetzel P, Maier-Reimer E, Botzet M, Jungclaus J, Keenlyside N, Latif M (2006) Effects of ocean biology on the penetrative radiation in a coupled climate model. J Clim 19(16):3973–3987CrossRefGoogle Scholar
  27. Whitaker JS, Compo GP, Wei X, Hamill TM (2004) Reanalysis without radiosondes using ensemble data assimilation. Mon Weather Rev 132(5):1190–1200CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Anatoliy Antonov
    • 1
  • Gerrit Lohmann
    • 2
  • Monica Ionita
    • 2
  • Mihai Dima
    • 3
  • Lars Linsen
    • 4
    Email author
  1. 1.Jacobs UniversityBremenGermany
  2. 2.Alfred Wegener InstituteBremerhavenGermany
  3. 3.University of BucharestBucharestRomania
  4. 4.Westfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations