Advertisement

Hydrochemistry and isotopic studies of carbonatite groundwater systems: the alkaline–carbonatite complex of Barreiro, southeastern Brazil

  • Daniel Bernardes Raposo
  • Sueli Yoshinaga PereiraEmail author
Original Article
  • 89 Downloads

Abstract

In Brazil, alkaline intrusions are source rocks for several commodities (bauxite, phosphate, niobium and barite, to mention a few), including mineral water. The present study aims to understand by means of chemical and stable isotope analyses, the residence time, circulation and hydrochemical facies of the groundwater systems from the alkaline–carbonatitic complex of Barreiro (State of Minas Gerais, Brazil). This Mesozoic alkaline complex is located in the Brazilian tropical region characterized by weathered soils and fractured rocks, which play an important role in the groundwater dynamics. To assess this influence, groundwater samples from 12 points and water samples from 3 artificial lakes were collected for the determination of chemical element and natural isotope (18O, deuterium and 13C) concentrations and 14C and tritium dating. Two main groundwater categories were revealed: (a) a local, acidic and sub-modern groundwater system developed in thick, poorly mineralized weathered soil from the inner part of ACCB, and (b) a basic, hypothermal, ca. 40-ky-old fractured aquifer developed in mineralized fenitized quartzites. The younger and shallower groundwater circulation is controlled by the present intrusion relief and is prone to environmental impacts. The older, hypothermal groundwater system indicates existing geothermal residual heat provided by the Mesozoic alkaline intrusion.

Keywords

Groundwater Mesozoic alkaline intrusion Tropical environment Hydrochemistry Stable isotopes Tritium δ13C and 14C dating 

Notes

References

  1. Beato DAC, Vianna HS, Davis EG (2000) Avaliação e diagnóstico hidrogeológico dos aquiferos de águas minerais do Barreiro do Araxá, MG – Brazil. In: 1st Joint World Congress on Groundwater. Olinda – PE. p 26. https://aguassubterraneas.abas.org/asubterraneas/article/view/24323; accessed on 29 May 2017
  2. Bertolo R, Hirata R, Fernandes A (2007) Hidrogeoquímica das águas minerais envasadas no Brasil. Rev Bras Geociências v 27(3):515–529CrossRefGoogle Scholar
  3. Bonotto DM (1998) Implications of groundwater weathered profile interactions to the mobilization of radionuclides. J pf South Am Earth Sci II, 4, pp. 389–405.  https://doi.org/10.1016/S0895-9811(98)00023-6 CrossRefGoogle Scholar
  4. Bonotto DM (2014) 222Rn, 220Rn and other dissolved gases in mineral waters of southeast Brazil. J Environ Radioact 132:21–30, 2014CrossRefGoogle Scholar
  5. Bonotto DM (2015) 226Ra and 228Ra in mineral waters of southeast Brazil. Environ Earth Sci 74:839–853, 2015CrossRefGoogle Scholar
  6. Bonotto DM (2016) Hydrogeochemical study of spas groundwaters from southeast Brazil. J Geochem Explor, 169 p. 60–72.  https://doi.org/10.1016/j.gexplo.2016.07.016 CrossRefGoogle Scholar
  7. Bonotto DM, Garcia-Tenorio R (2019) Investigating the migration of pollutants at Barreiro area, Minas Gerais state, Brazil, by 210Pb chronological method. J Goechem Explor 196:(2019) 219–234CrossRefGoogle Scholar
  8. Chen Z, Nie Z, Zhang G et al (2006) Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin, Northwestern China. Hydrogeol J 14:1635–1651.  https://doi.org/10.1007/s10040-006-0075-7 CrossRefGoogle Scholar
  9. Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publisher, Stockport 311Google Scholar
  10. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Worthfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The Last Glacial Maximum. Science 325(5941):710–714CrossRefGoogle Scholar
  11. Custódio E, Llamas MR (1983) Hidrologia Subterranea. Barcelona Ediciones Omega, p 2350.  https://doi.org/10.1126/science.1172873Science. http://www.sciencemag.org
  12. Elliot HAL, Wall F, Chakhmouradian AR, Siegfried PR, Dahlgren S, Weatherley S, Finch AA, Marks MAW, Doewman E, Deady E (2018) Fenites associated with carbonatites complexes: a review. Ore Geol Rev 93: 38–59CrossRefGoogle Scholar
  13. Fontes JC, Garnier JM (1979) Determination of the initial 14-C activity of total dissolved carbon: a review of existing models and a new approach. Water Res Res 15:399–413.  https://doi.org/10.1029/WR015i002p00399 CrossRefGoogle Scholar
  14. Gomes TAT (2017) Caracterização hidrogeológica e simulação numérica da jazida de pirocloro associada ao Complexo Alcalino Carbonatítico do Barreiro, Araxá – MG. Master Dissertation University of Campinas, 140pGoogle Scholar
  15. Gomes CB, Conti-Chiaramonti P, Azzone RG, Ruberti E, Rojas GEE (2018) Cretaceous carbonatites of the southeastern Brazilian Platform: a review. Braz J Geol 48(2):317–345.  https://doi.org/10.1590/2317-4889201820170123 June 2018.CrossRefGoogle Scholar
  16. Hasui Y, Cordani UG (1 968) Idades potássio-argônio de rochas eruptivas mesozóicas do oeste mineiro e sul de Goiás. In: 22° Congresso Brasileiro de Geologia, Belo Horizonte. Proceedings. p. 139–143Google Scholar
  17. Heineck CA, Leite CAS, Silva MA, Vieira VS (2003) Mapa geológico do Estado de Minas Gerais, Escala 1:1.000.000. Convênio COMIG/CPRM, Belo Horizonte, 1 mapGoogle Scholar
  18. Heinrich EW (1966) The Geology of Carbonatites. Rand McNally & Company, ChicagoGoogle Scholar
  19. Hem JD Study and interpretation of chemical characteristics of natural waters. 3 ed., Publication of USGS, 1985Google Scholar
  20. Hurter SJ (1987) Aplicação de Geotermômetros Químicos em Águas de Fontes Termais Brasileiras na Determinação de Fluxo Geotérmico. Master Dissertation, São Paulo UniversityGoogle Scholar
  21. IAEA-GNIP (2010) Global Network of Isotopes in Precipitation. Water resources program—Brasilia Airport—yearly means. http://www-naweb.iaea.org/napc/ih/IHS resources gnip.html. Accessed on 12 Mar 2010
  22. Issa Filho A, Lima PS, Souza OM (1984) Aspectos da Geologia do Complexo Carbonatítico do Barreiro, Araxá, MG, Brasil. In: Rodrigues CS, Lima PS (eds) Complexos Carbonatíticos do Brasil: Geologia. CBMM, São Paulo, pp 20–44Google Scholar
  23. Issa Filho A, Riffel BF, Faria Sousa CA (2002) Some aspects of the mineralogy of CBMM niobium deposit and mining and pyrochlore ore processing. https://samario01.cbmm.com.br/cgs/publico/VisualizaArquivoBVPublica.ashx?DOC_Codigo=715
  24. Krasnova NI, Petrov TG, Balasgankaya EG, Garcia D, Moutte J, Zaitsev AN (2004) Introduction to phoscorites: occurrences, composition, nomenclature and petrogenesis. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from Mantle to Mine: the key example of the Kola Alkaline Province. Black Bear Press, Cambridge, 498 pGoogle Scholar
  25. Le Bas MJ (1987) Nephelinites and carbonatites. In: Fitton JG, Upton BGJ (Eds.), Alkaline igneous rocks. geological society special publications. Blackwell Scientific Publications, Hoboken pp. 53–84Google Scholar
  26. Le Bas MJ (2008) Fenites associated with carbonatites. Can Mineral 46:915–932.  https://doi.org/10.3749/canmin.46.4.915 CrossRefGoogle Scholar
  27. Mancini LH, Bonotto DM (2006) Migração de Rádio nas Águas Superficiais e Subterrâneas do Morro do Ferro e Complexo Alcalino do Barreiro, Minas Gerais. BRASIL Geochimica Brasiliensis 20(3):251–266Google Scholar
  28. Mason B, More C (1982) Principles of geochemistry, 4th edn. Wiley, New York, 344 ppGoogle Scholar
  29. Mitchell RH (2015) Primary and secondary niobium mineral deposits associated with carbonatites. Ore Geol Rev 64:626–641CrossRefGoogle Scholar
  30. Mook HG, Meijer HJ, Rozanski K, Froehlich K, Geyh M, Seiler KP (2000) Environmental isotopes in hydrogeological cycle—principles and applications. UNESCO-IAEA. v. 1 http://www.naweb.iaea.org/napc/ih. Accessed on 19 Sep 2017. p 266 p
  31. Moraes LC, Seer HJ, Bento JHB, Leal CF, Madeira MR (2008) Análises geométrica do alojamento de magmas no entorno do Complexo Alcalino-Carbonatítico do Barreiro, Araxá, Minas Gerais, por meio da atitude espacial de fraturas e diques. In: Proceedings of IV Simpósio de vulcanismo e ambientes associados, Foz do Iguaçu, PR. Anais. CD-RomGoogle Scholar
  32. Pearson FJ (1965) Use Of C-13/C-12 Ratios To Correct Radiocarbon Ages of Material Initially Diluted By Limestone. In: Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating Washington: Pulman. p. 357Google Scholar
  33. Piper AM (1944) A graphic procedure in geochemical interpretation of water analyses. Trans Am Geophys Union 1944 25:914–923CrossRefGoogle Scholar
  34. Raposo DB, Pereira SY (2013) Caracterização litológica e hidrodinâmica do aquífero associado ao Complexo Alcalino Carbonatítico do Barreiro, Oeste de Minas Gerais. Geociências (São Paulo. Online), v. 32, p 33–50, 2013Google Scholar
  35. Rodrigues CS, Lima PS (1994) Carbonatític complexes of Brazil. In: Rodrigues CS, Lima PS Carbonatitic complexes of Brazil: geology. CBMM, São Paulo, pp 1–17Google Scholar
  36. Sad GJH, Torres N (1976) Geology and mineral resources of the Barreiro Complex, Araxá, Brazil. In: Proceedings of Simpósio Internacional de Carbonatitos. Poços de Caldas, Brasil. 1976Google Scholar
  37. Seer HJ (1999) Evolução tectônica dos grupos Araxá, Ibiá e Canastra na Sinforma de Araxá, Minas Gerais. PhD Thesis. Brasilia University. 267 pGoogle Scholar
  38. Soler I, Gil AS, Bonotto DM (2015) Hydrochemical and stable isotopes (H, O, S) signatures in deep groundwaters of Paraná basin, Brazil. 2015. Environ Earth Sci (2015) 73:95.  https://doi.org/10.1007/s12665-014-3397 CrossRefGoogle Scholar
  39. Tallini M, Falcone RA, Carucci V, Falgiani A, Parisse B, Petitta M (2014) Isotope hydrology and geochemical modeling: new insights into the recharge processes and water = rock interactions of a fissured carbonate aquifer (Gran Sasso, central Italy). Environ Earth Sci (2014) 72:4957–4971.  https://doi.org/10.1007/s12665-014-3364-9 CrossRefGoogle Scholar
  40. Tay CK, Kortatsi BK, Hayford E, Hodgson IO (2014) Origin of major dissolved ions in groundwater within the Lower Pra Basin using groundwater geochemistry, source-rock deduction and stable isotopes of 2H and 18O. Environ Earth Sci 71:5079–5097.  https://doi.org/10.1007/s12665-013-2912-z CrossRefGoogle Scholar
  41. Torres MC, Gaspar JC (1995) Geoquímica do manto de intemperismo da mina de fosfato do Complexo Alcalino-Carbonatítico do Barreiro, Araxá-MG. In: Proceedings of 5° Congresso Brasileiro de Geoquímica e III Congresso de Geoquímica dos países de língua portuguesa. Niterói, RJ. Expanded AbstractsGoogle Scholar
  42. Toyoda K, Horiuchi H, Tokonami M (1994) Dupal anomaly of Brazilian carbonatites: Geochemical correlations with hotspots in South Atlantic and implications for the mantle source. Earth Planet Sci Lett 126:315–331.  https://doi.org/10.1016/0012-821X(94)90115-5 CrossRefGoogle Scholar
  43. Travessa G, Gomes CB, Brotzu P, Buraglini N, Morbidelli L, Principato MS, Ronca S, Ruberti E (2000) Petrography and mineral chemistry of carbonatites and mica-rich rocks from the Araxá complex (Alto Paranaíba Province, Brazil). An. Acad. Bras. Ci. v. 73, n. 1, p. 71–98.  https://doi.org/10.1590/S0001-37652001000100008 CrossRefGoogle Scholar
  44. Viana HS, Davis EG, Beato DC, Cabral JL (1999) Projeto Araxá: Estudo Geoambiental das Fontes Hidrominerais. Belo Horizonte. COMIG/CPRM. 125 pGoogle Scholar
  45. Zharikov VA, Pertsev NN, Rusinov VL, Callegari E, Fettes DJ (2007) Metasomatism and metasomatic rocks. In: Recommendations by the IUGS, Subcommision of the Systematics of Metamorphic Rocks. British Geological SurveyGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Daniel Bernardes Raposo
    • 1
  • Sueli Yoshinaga Pereira
    • 2
    Email author
  1. 1.CMOC International BrasilSão PauloBrazil
  2. 2.Geology and Natural Resources Department, Institute of GeosciencesUniversity of CampinasCampinasBrazil

Personalised recommendations