Abstract
Catastrophic landslides and flowslides usually occur at large waste dumps. Compared to normal slopes, waste dumps have unique topographical conditions and material properties that cause considerable challenges associated with hazard prediction and mitigation. This paper describes one of the largest and highest waste dumps in China, the Zhujiabaobao waste dump, which covers an area of 4 km2 and has a volume of 30,000 × 104 m3 mine waste. A field investigation in April 2016 indicated that the waste dump was unstable. To assess the stability of the slope and predict its hazard scale, the authors use a 3D slope model based on a discrete element method to achieve it. The model is first constructed based on field investigations, including reconnaissance, as well as geomorphological analysis and laboratory experiments. Then, the strength reduction technique is used to calculate the safety factor of a slope. The results show that the safety factor of the slope is 2.3, and compared to the normal limit equilibrium method, the safety factor calculated by the DEM simulation is more accurate and approximately about 15% larger, because it considers more realistic boundary conditions and material properties. During the calculation of the safety factor, the corresponding run-out process can be presented as well. The simulation shows that sliding masses at different parts have different mobility performances, which the upper and front particles presenting the potential to move farther and faster during the run-out process due to force conditions. Additionally, the proposed method shows that topography is a crucial factor for mass movement that requires special attention for the prevention and prediction of landslide hazards.

















Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Barrio GKP, Carvalho RMD, Kwade A, Tavares LM (2013) Contact parameter estimation for DEM simulation of iron ore pellet handling. Powder Technol 248(2):84–93
Bishop AW (1973) The stability of tips and spoil heaps. J Exp Biol. https://doi.org/10.1144/GSL.QJEG.1973.006.03.15
Bouchaud JP, Cates ME, Claudin P (1995) Stress distribution in granular media and nonlinear wave equation. Journal De Physique I 5:639–656
Cho SE (2007) Effects of spatial variability of soil properties on slope stability. Eng Geol 92(3–4):97–109
Cho YC, Song YS (2014) Deformation measurements and a stability analysis of the slope at a coal mine waste dump. Ecol Eng 68(7):189–199
Crosta GB, Chen H, Lee CF (2004) Replay of the 1987 Val Pola landslide. Ital Alps Geomorphol 60:127–146
Cundall PA, Strajectory ODL (2015) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65
Dai Z, Huang Y (2016) A three-dimensional model for flow slides in municipal solid waste landfills using smoothed particle hydrodynamics. Environ Earth Sci 75(2):132
Dantu P (1957) Contribution à l’étude mécanique et géométrique des milieux pulvérulents. In: Proceedings of the 4th international conference on soil mechanics and foundation engineering
Derjaguin BV, Muller VM, Toporov YP (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53(2):314–326
Farah K, Ltifi M, Hassis H (2011) Reliability analysis of slope stability using stochastic finite element method. Procedia Eng 10:1402–1407
Francois JF, Mcdowell GR (2010) A method to model realistic particle shape and inertia in DEM. Granul Matter 12:459–467
Gao Y, Yin Y, Li B, Wang W, Zhang N, Yang C, Zuo X (2017) Investigation and dynamic analysis of the long runout catatrophic landslide at the Shenzhen landfill on December 20, 2015, in Guangdong, China. Environ Earth Sci 76(1):13
Gennes PGD (1999) Granular matter: a tentative view. More things in heaven and earth. Springer, New York, pp S374–S382
Guan R, Liu G, Di H, Zhou CB (2013) Effect of particle shape on mechanical behaviors of rocks: a numerical study using clumped particle model. Sci World J. https://doi.org/10.1155/2013/589215
Han XD, Chen JP, Xu PH, Zhan JW (2017a) A well-balanced numerical scheme for debris flow run-out prediction in Xiaojia Gully considering different hydrological designs. Landslides. https://doi.org/10.1007/s10346-017-0850-7
Han XD, Chen JP, Xu PH, Niu CC, Zhan JW (2017b) Runout analysis of a potential debris flow in the dongwopu gully based on a well-balanced numerical model over complex topography. Bull Eng Geol Environ 77(11):1–11
Hungr O, Salgado FM, Byrne PM (1989) Evaluation of a three-dimensional method of slope stability analysis. Can Geotech J 26(4):679–686
Janssen (1895) Versuche über Getreidedruck in Silozellen. Zeitschr.d.vereines Deutscher Ingenieure
Jarari NH, Stark TD, Merry S (2013) The july 10 2000 payatas landfill slope failure. Int J Geoeng Case Histories 2(3):208–228
Jiang Q, Qi Z, Wei W, Zhou CB (2015) Stability assessment of a high rock slope by strength reduction finite element method. Bull Eng Geol Environ 74(4):1153–1162
Lavigne F, Wassmer P, Gomez C, Davies TA, Sri D, Iskandarsyah T, Gaillard JC, Fort M, Texier P, Boun M, Pratomo I (2014) The 21 February 2005, catastrophic waste avalanche at Leuwigajah dumpsite, Bandung, Indonesia. Geoenviron Disasters 1:1–12
Lin CH, Lin ML (2015) Evolution of the large landslide induced by Typhoon Morakot: a case study in the Butangbunasi River, southern Taiwan using the discrete element method. Eng Geol 197:172–187
Lo CM, Lin ML, Tang CL, Hu CJ (2011) A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit. Eng Geol 123(1–2):22–39
Lo CM, Huang WK, Lin ML (2016) Earthquake-induced deep-seated landslide and landscape evolution process at Hungtsaiping, Nantou County, Taiwan. Environ Earth Sci 75(8):1–16
Lu M, Mcdowell GR (2007) The importance of modelling ballast particle shape in the discrete element method. Granul Matter 9:69–80
Lu CY, Tang CL, Chan YC, Hu JC, Chi CC (2014) Forecasting landslide hazard by the 3D discrete element method: a case study of the unstable slope in the Lushan hot spring district, central Taiwan. Eng Geol 183(31):14–30
Ma S, Hu J, Ma Y, Dong H (2016) Research on correlation of fine-macro mechanical parameters of three- dimensional discrete element accumulated gravel soil. Chin J Comput Mech 33(1) (In Chinese)
Masson S, Martinez J (2000) Effect of particle mechanical properties on silo flow and stresses from distinct element simulations. Powder Technol 109(1):164–178
Matsui T, San KC (1992) Finite element slope stability analysis by shear strength reduction technique. Soils Found 32(1):59–70. https://doi.org/10.3208/sandf1972.32.59
Maugis D (1992) Adhesion of spheres: the JKR-DMT transition using a dugdale model. J Colloid Interface Sci 150(1):243–269
McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41(41):1084–1097
Miao CX, Zheng JJ, Zhang RJ, Cui L (2017) DEM modeling of pullout behavior of geogrid reinforced ballast: the effect of particle shape. Comput Geotech 81:249–261
Mindlin RD, Deresiewicz H (1953) Elastic spheres in contact under varying oblique forces. J Appl Mach 20:327–344
Niant K, Huanger Q, Wans S, Cheng Q (2012) Three-dimension strength -reduction finite element analysis of slopes: geometric effects. Can Geotech J 49(5):574–588
Ouyang C, Zhou K, Xu Q, Yin J, Peng D, Wang D, Li W (2016) Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China. Landslides. https://doi.org/10.1007/s10346-016-0764-9
Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Methods Geomech 33(2):143–172
Renzo AD, Maio FPD (2004) Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem Eng Sci 59(3):525–541
Salciarini D, Tamagnini C, Conversini P (2010) Discrete element modeling of debris-avalanche impact on earthfill barriers. Phys Chem Earth 35(3–5):172–181
Shakesby RA, Whitlow JR (1991) Failure of a mine waste dump in Zimbabwe: Causes and consequences. Environ Geol Water Sci 18(2):143–153
Staron L, Lajeunesse E (2009) Understanding how volume affects the mobility of dry debris flows. Geophys Res Lett 36(12):91–100
Steiakakis E, Kavouridis K, Monopolis D (2009) Large scale failure of the external waste dump at the “South Field” lignite mine, Northern Greece. Eng Geol 104(3):269–279
Tang CL, Hu JC, Lin ML, Angelier J, Lu CY, Chan YC, Chu HT (2009) The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation. Eng Geol 106(1–2):1–19
Thornton C (1991) Interparticle sliding in the presence of adhesion. J Phys D Appl Phys 24(11):1942–1946
Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug flow of non-cohesion particles in a horizontal pipe. Powder Technol 71(3):239–250
Wang G, Yang C, Zhang C, Ma H, Kong X, Hou K (2011) Research on particle size grading and slope stability analysis of super-high dumping site. Rock Soil Mech 32(3):905–914 (In Chinese)
Wang PT, Yang TH, Zhu LK (2013) Strength reduction method for rock slope stability analysis based on PFC2D. DongbeiDaxueXuebao J Northeastern Univ 34(1):127–130 (In Chinese)
Xie XB, Pang CL (2004) Fractal characteristics of size distribution and shear strength of bulky rock material in waste pile of mines. Rock Soil Mech 25(2):287–291 (In Chinese)
Yellishetty M, Darlington WJ (2011) Effects of monsoonal rainfall on waste dump stability and respective geo-environmental issues: a case study. Environ Earth Sci 63(6):1169–1177
Yin Y, Li B, Wang W, Zhan L, Xue Q, Gao Y, Zhang N, Chen H, Liu T, Li A (2016) Mechanism of the december 2015 catastrophic landslide at the shenzhen landfill and controlling geotechnical risks of urbanization. Engineering 2(2):230–249
Zhang GC, Xiang X, Tang H (2011) Field test and numerical calculation of restitution coefficient of rock fall collision. Chin J Rock Mech Eng 30(6):1266–1273 (In Chinese)
Zhang YB, Chen GQ, Zeng L, Li Y, Zhuang XY (2013) Effects of geometries on three-dimensional slope stability. Can Geotech J 50(3):233–249
Zhao JJ, Xiao JG, Min LL, Ma YT (2016) Discrete element modeling of a mining–induced rock slide. SpringerPlus. https://doi.org/10.1186/s40064-016-3305-z
Zheng H, Liu DF. Li CG (2005) Slope stability analysis based on elasto-plastic finite element method. Int J Numer Methods Eng 64(14):1871–1888
Zhou YC, Wright BD, Yang RY, Xu BH, Yu AB (1999) Rolling friction in the dynamic simulation of sandpile formation. Phys A 269:536–553
Zhou J, Wang JQ, Zeng Y, Cai JM (2009a) Slope safety factor by methods of particle flow code strength reduction and gravity increase. Rock Soil Mech 30(6):1549–1554 (In Chinese)</bib>
Zhou J, Wang JQ, Zeng Y, Zhang J (2009b) Simulation of slope stability analysis by particle flow code. Rock Soil Mech 30(1):86–90 (In Chinese)
Zhou JW, Cui P, Fang H (2013) Dynamic process analysis for the formation of Yangjiagou landslide-dammed lake triggered by the Wenchuan earthquake, China. Landslides. https://doi.org/10.1007/s10346-013-0387-3
Zhou JW, Huang KX, Shi C, Hao MH (2015) Discrete element modeling of the mass movement and loose material supplying the gully process of a debris avalanche in the Bayi Gully, Southwest China. J Asian Earth Sci 99:95–111
Acknowledgements
This work was supported by the National Natural Science Fund of China (Grant no. 41330636), and the Graduate Innovation Fund of Jilin University (Grant no. 2017137).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bao, Y., Sun, X., Chen, J. et al. Stability assessment and dynamic analysis of a large iron mine waste dump in Panzhihua, Sichuan, China. Environ Earth Sci 78, 48 (2019). https://doi.org/10.1007/s12665-019-8043-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s12665-019-8043-4


