Environmental Earth Sciences

, 77:785 | Cite as

Hydrogeochemical characterization and evolution of a regional karst aquifer in the Cuatrociénegas area, Mexico

  • Antonio CardonaEmail author
  • Carlos Gutierrez-Ojeda
  • Manuel Martínez-Morales
  • Gerardo Ortiz-Flores
  • Luis González-Hita
Original Article


The Cuatrociénegas area is useful for the investigation of the effect of groundwater extraction in the Chihuahuan freshwater xeric ecoregion. It has been investigated at this time using a selection of geochemical indicators (major, minor and trace elements) and δ34S data, to characterize the origin of groundwater, the main geochemical processes and the mineral/groundwater interactions controlling the baseline geochemistry. The area is composed of limestones of Mesozoic age, with a composite thickness of about 500 m, overlaid by basin fill (poorly consolidated young sediments). Substantial water extraction and modification of natural discharges from the area along the last century have produced a detrimental impact on ecosystem structure and function. Water–rock interactions, mixing and evaporative processes dominate the baseline groundwater quality. Natural recharge is HCO3–Ca type in equilibrium with calcite, low salinity (TDS < 500 mg/L), Cl lower than 11 mg/L and average Li+ concentration of 0.005 mg/L. Along the groundwater flow systems, δ34S evidence and mass transfer calculations indicate that Cretaceous gypsum dissolution and dedolomitization reactions adjust water composition to the SO4–Ca type. The increase of water–rock interaction is reflected by Cl values increase (average 68 mg/L), TDS up to about 1500 mg/L and an average Li+ concentration of 0.063 mg/L. Calculations with chemical geothermometers indicate that temperature at depth could be at maximum of 15–20 °C higher than field-measured temperature for pozas. After groundwater is discharged to the surface, chemical evolution continues; water evaporation, CO2 degassing and precipitation of minerals such as gypsum, calcite and kaolinite represent the final processes and reactions controlling water chemical composition.


Hydrochemistry Karst Arid regions Hydrochemical modeling Mexico 



This paper presents the results obtained from an investigation by Instituto Mexicano de Tecnologia del Agua and Universidad Autonoma de San Luis Potosi, supported by Comision Nacional del Agua and Instituto Nacional de Ecologia. The preparation of the paper was done for the period of the sabbatical stay of Antonio Cardona at Oklahoma State University, supported by CONACyT and Universidad Autonoma de San Luis Potosi. We thank Jorge Aceves and Cristian Abraham Rivera Armendariz for drawing Figs. 1 and 2 and for their helpful advice. We also appreciate the contributions of the two anonymous reviewers; they highly contributed to the improvement of the manuscript.


  1. Aldama AA, Aparicio-Mijares FJ, Gutierrez-Ojeda C, Martínez-Morales M, González-Hita L, Herrera-Zamarrón G, Mata-Arellano I, Mejía-González MA, Ortiz-Flores G, Gallardo-Almanza P, Lobato-Sánchez R, Pérez-López JL, Reza-Arzate G, Fritz P, Ramírez-Espinoza J (2005) Estudio hidrogeológico de los acuíferos el Hundido y Cuatrociénegas Coahuila. Instituto Mexicano de Tecnología del Agua (internal report), MexicoGoogle Scholar
  2. Aldama AA, Aparicio-Mijares FJ, Gutiérrez-Ojeda C, Martínez-Morales M, González-Hita L, Herrera-Zamarrón G, Mata-Arellano I, Mejía-González M, Ortiz-Flores G, Gallardo-Almanza P, Lobato-Sánchez R, Pérez-López JL, Reza-Arzate G, Fritz P, Ramírez-Espinoza J, Cardona A (2007) Comportamiento hidrogeológico de los acuíferos Cuatrociénegas y El Hundido, Coahuila, México. Ingenieria Hidraulica en Mexico 22(3):37–59Google Scholar
  3. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. AA Balkema Publishers, LeidenCrossRefGoogle Scholar
  4. Badino G, Bernabei T, De Vivo A, Giulivo I, Savino G (eds) (2004) Under the Desert: the mysterious waters of Cuatro Ciénegas. La Venta, Instituto Coahuilense Ecología, Tintoretto (TV), ItalyGoogle Scholar
  5. Carrillo-Rivera JJ, Cardona A, Moss D (1996) Importance of the vertical component of groundwater flow; a hydrogeochemical approach in the valley of San Luis Potosi, Mexico. J Hydrol 185(1–4):23–44CrossRefGoogle Scholar
  6. Celle-Jeanton H, Huneau F, Travi I, Edmunds WM (2009) Twenty years of groundwater evolution in the Triassic sandstone aquifer of Lorraine: impacts on baseline water quality. Appl Geochem 94:198–213Google Scholar
  7. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC Press, Lewis Publishers, Boca RatonGoogle Scholar
  8. CONAGUA (2015) Atlas del agua en Mexico. Secretaria de Medio Ambiente y Recursos Naturales, MexicoGoogle Scholar
  9. Dinger EC, Cohen AE, Hendrickson DA, Marks JC (2005) Aquatic invertebrates of Cuatro Cienegas, Coahuila, Mexico: natives and exotics. Southwest Nat 50(2):237–281CrossRefGoogle Scholar
  10. Dinger EC, Hendrickson DA, Winsborough BM, Marks JC (2006) Role of fish in structuring invertebrates on stromatolites in Cuatro Cienegas. Mexico Hydrobiol 563:407–420CrossRefGoogle Scholar
  11. Edmunds WM (2009) Geochemistry’s vital contribution to solving water resource problems. Appl Geochem 24(6):1058–1073CrossRefGoogle Scholar
  12. Edmunds WM, Bath AH, Miles DL (1982) Hydrochemical evolution of the East Midlands Triassic sandstone aquifer England. Geochim Cosmochim Acta 46:2069–2082CrossRefGoogle Scholar
  13. Espinasa-Pereña R (2007) El Karst de Mexico, Mapa NA III 3. In: Coll-Hurtado A (ed), Nuevo Atlas Nacional de Mexico, Instituto de Geografia, Universidad Nacional Autonoma de MexicoGoogle Scholar
  14. Espinasa-Pereña R (2013) Karstic phenomena susceptibility map of Mexico. Abstract NH51B-05 presented at 2013 Meeting of the Americas. AGU, Cancun, MexicoGoogle Scholar
  15. Evans SB (2005) Using geochemical data to define flow systems in Cuatrociénegas, Coahuila, Mexico. Master of Sciences Dissertation, The University of Texas at AustinGoogle Scholar
  16. Ford D, Williams P (2013) Karst hydrogeology and geomorphology. Wiley, West SussexGoogle Scholar
  17. Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50CrossRefGoogle Scholar
  18. Fournier RO (1979) A revised equation for Na–K geothermometers. Geoth Res Council Trans 3:221–224Google Scholar
  19. Fournier RO (1991) Water Geothermometers applied to geothermal energy. In: D’amore F (ed) Application of geochemistry in geothermal reservoir development. UNITAR, USA, pp 37–69Google Scholar
  20. Fournier RO, Potter RWII (1979) Magnesium correction to Na–K–Ca geothermometer. Geochim Cosmochim Acta 43:1543–1550CrossRefGoogle Scholar
  21. Fulton RB (1983) Strontium. In: Lefond SJ (ed) Industrial minerals and rocks, vol 2, 5th edn. AIME, New York, pp 1229–1233Google Scholar
  22. Giggenbach WF (1988) Geothermal solute equilibria: derivation of Na–K–Mg–Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765CrossRefGoogle Scholar
  23. Gomez-Pompa A, Dirzo R (1995) Reservas de la Biosfera y Otras Areas Naturales Protegidas de México. SEMARNAT-CONABIO Mexico CityGoogle Scholar
  24. Gonzalez-Naranjo GA (2006) Análisis estructural y estudio paleomagnetico en el área Potrero El Colorado, porción occidental de la sierra La Fragua, Coahuila, México. Master of Sciences Dissertation, Universidad Autónoma de Nuevo LeónGoogle Scholar
  25. González-Sánchez F (2008) Caracterización y génesis de los yacimientos minerales estratoligados de celestina, barita, fluorita y plomo-zinc del noreste de México. PhD Dissertation, Centro de Geociencias-UNAMGoogle Scholar
  26. González-Sánchez F, Camprubí A, González-Partida E, Puente-Solís R, Canet C, Centeno-García E, Atudorei V (2009) Regional stratigraphy and distribution of epigenetic stratabound celestine, fluorite, barite and Pb–Zn deposits in the MVT province of northeastern Mexico. Miner Deposita 44:343–361CrossRefGoogle Scholar
  27. Guzzy-Arredondo GS, Murillo-Muñetón G, Morán-Zenteno DJ, Grajales-Nishimura JM, Martínez-Ibarra R, Schaaf P (2007) High-temperature dolomite in the Lower Cretaceous Cupido Formation, Bustamante Canyon, northeast Mexico: Petrologic, geochemical and microthermometric constraints. Rev Mex Ciencias Geol 24:131–149Google Scholar
  28. Johannesson KH, Cortes A, Kilroy KC (2004) Reconnaissance isotopic and hydrochemical study of Cuatro Cienegas groundwater, Coahuila, Mexico. J S Am Earth Sci 17:171–180CrossRefGoogle Scholar
  29. Kesler SE, Jones LM (1981) Sulfur and strontium isotopic geochemistry of celestite, barite and gypsum from the Mesozoic basins of northeastern Mexico. Chem Geol 31:211–224CrossRefGoogle Scholar
  30. Kharaka YK, Mariner RH (1989) Chemical geothermometers and their application to formation waters from sedimentary basins. In: Naeser DD, McCulloh TH (eds) Thermal history of sedimentary basins, methods and case histories. Springer, New York, pp 99–117CrossRefGoogle Scholar
  31. Lehmann C, Osleger D, Montañez IP, Sliter W, Arnaud-Vanneau A, Banner J (1999) Evolution of Cupido and Coahuila carbonate plataforms, Early Cretaceous, northeastern Mexico. GSA Bull 111:101–129CrossRefGoogle Scholar
  32. Lesser and Asociados (2001) Estudio de evaluación hidrogeológica e isotópica en el Valle del Hundido, Coahuila, Gerencia de Aguas Subterráneas, Comisión Nacional del Agua, contrato GAS-006-PRO 01 (internal report)Google Scholar
  33. Lesser and Asociados (2002) Estudio Geohidrológico en Cuatrociénegas, Coahuila, Comisión Estatal de Aguas y Saneamiento de Coahuila, Contrato CEAS IAI-18-02-AP (internal report)Google Scholar
  34. Martin JB, White WB (eds) (2008) Frontiers in karst research. Special Publication 13. Karst Waters Institute, LeesburgGoogle Scholar
  35. McKee JW, Jones NW, Long LE (1990) Stratigraphy and provenance of strata along the San Marcos fault, central Coahuila, Mexico. GSA Bull 102:593–614CrossRefGoogle Scholar
  36. Minckley WL (1969) Environments of the bolson of Cuatro Cienegas, Coahuila, Mexico, with special reference to the aquatic biota. Univ Texas El Paso Sci Ser 2:1–65Google Scholar
  37. Minckley WL, Cole GA (1968) Preliminary limnologic information on waters of the Cuatro Cienegas Basin, Coahuila, Mexico. Southwest Nat 13:421–431CrossRefGoogle Scholar
  38. Ortega-Gutierrez F, Mitre-Salazar LM, Roldán-Quintana J, Aranda-Gómez JJ, Morán-Zenteno DJ, Alanis-Alvarez SA, Nieto-Samaniego AF (1992) Carta Geologica de la Republica Mexicana. UNAM Quinta Edicion escala 1:2000000 (Mexico) Google Scholar
  39. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQ-C (version 2); a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geological Survey, WRI 99-4259Google Scholar
  40. PEMEX (1970) Informe geológico del area Villa Ocampo, Coahuila, Petróleos Mexicanos, Superintendencia de Exploración, Ciudad Reynosa. Tamaulipas, Mexico (internal report) Google Scholar
  41. Piccini L, Forti P, Giulivo I, Mecchia M (2007) The polygenetic caves of Cuatro Cienegas (Coahuila, Mexico): morphology and speleogenesis. Intern J Speleol 36(2):83–92CrossRefGoogle Scholar
  42. Pinkava DJ (1984) Vegetation and flora of the Bolson de Cuatro Cienegas Region, Coahuila, Mexico: IV. Summary, Endemism and corrected catalogue. J Arizona-Nevada Acad Sci 19:23–47Google Scholar
  43. Rodríguez JM, Sánchez JAV (2000) Disponibilidad de recursos hídricos en el Cañón de las Calaveras como una alternativa de abastecimiento de agua para el municipio de Cuatrociénegas. Universidad Autónoma de Coahuila, Facultad de Ciencias Químicas, Departamento de Biotecnología, Coahuila MexicoGoogle Scholar
  44. Souza V, Espinoza-Asuar L, Escalante AE, Eguiarte LE, Farmer J, Forney L, Lloret L, Rodríguez-Martínez JM, Soberón X, Dirzo R, Elser JJ (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. PNAS 103:6565–6570CrossRefGoogle Scholar
  45. Stein BA, Kutner LS, Adams JS (2000) Precious Heritage: the Status of Biodiversity in the United States. Oxford University Press, OxfordGoogle Scholar
  46. Taylor DA (1966) A remarkable snail fauna from Coahuila. Mexico Veliger 9:152–228Google Scholar
  47. Tóth J (1999) Groundwater as a geologic agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14CrossRefGoogle Scholar
  48. Villareal-Fuentes J (2008) Depósitos de celestina en la zona de los Alamitos, estado de Coahuila: un ejemplo de mineralización de tipo MVT. Master of Sciences Dissertation, Centro de Geociencias-UNAMGoogle Scholar
  49. Winsborough BM (1990) Some Ecological Aspects of Modern Fresh-Water Stromatolites in Lakes and Streams of the Cuatro Cienegas Basin, Coahuila, Mexico. PhD Dissertation, The University of Texas at Austin, TexasGoogle Scholar
  50. Wolaver BD (2008) Hydrogeology of the Cuatrociénegas Basin, Coahuila, Mexico: An Integrative Approach to Arid Karst Aquifer Delineation. PhD Dissertation, The University of Texas at Austin, TexasGoogle Scholar
  51. Wolaver BD, Sharp JM Jr, Rodriguez JM, Ibarra-Flores JC (2008) Delineation of regional arid karstic aquifers: an integrative data approach. Ground Water 46(3):396–413CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Earth SciencesUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Instituto Mexicano de Tecnología del AguaJiutepecMexico

Personalised recommendations