Advertisement

Environmental Earth Sciences

, 77:757 | Cite as

Criteria for the design of embankment dams founded on gypsiferous geological formations

  • C. M. BaenaEmail author
  • M. Á. Toledo
Original Article
  • 127 Downloads

Abstract

This article sets criteria for selecting the typology of embankment dam and the elements for the foundation to be impervious enough (blanket, cutoff…) when the dam site contains disseminated gypsum particles in limited quantities (less than 40%) and the flow is interstitial. Numerical modeling analysis of the soluble material dissolution of a dam foundation includes two coupled processes: seepage and dissolution. In a previous manuscript, the mathematical model that simulates the progress of the dissolution of the gypsum particles in the foundation was implemented in the code DISOLUCION2D, also validated by experimental work. This code simulates the advance of the dissolution front (foundation area where the dissolution of soluble particles is taking place) at each time step, based on the flow velocities obtained from the seepage flow net calculation. The dissolution process progressively increases the permeability of the foundation and therefore the flow rate under the dam, jeopardising in some cases the safety of the dam. Based on the validated code, a study covering 140 cases of dams and their foundations was carried out. From the relevant data for each dam site (height, thickness of the gypsiferous layer, gypsum percentage of the layer) and the prescribed criteria for maximum permissible flow rate or maximum flow rate increase, the various type sections of the dam that satisfy the required conditions can be identified. From among these, the dam designer will be able to choose the optimal solution, taking into consideration the particular characteristics of the project (available materials, economic costs...).

Keywords

Dissolution Seepage Dam Gypsum Soluble foundation Permeability Blanket Cutoff 

List of symbols

A

Area exposed to dissolution (L2)

Af

Acceleration factor

C

Concentration (M/L3)

Cs

Concentration of saturation (M/L3)

E

Gypsiferous layer thickness (L)

H

Dam height (L)

i

Hydraulic gradient

K

Permeability coefficient (L/T)

Kd

Dissolution rate constant (L/T), usually K in bibliography

K0

Initial permeability coefficient of the gypsiferous layer (L/T)

K02

Initial permeability coefficient of the non-gypsiferous layer (L/T)

Ktd

Permeability coefficient after dissolution of the gypsiferous layer (L/T)

M

Mass of soluble solid (M)

n

Porosity

n0

Initial porosity

p

Depth of the cutoff (L)

Q

Volumetric flow rate (L3/T)

Q0

Initial flow rate (L3/T)

Q*

Dimensionless flow rate

Qdt

Flow rate for complete dissolution (L3/T)

Qab

Flow rate of arrival downstream (L3/T)

Qmáx

Flow rate of complete enclosure (L3/T)

Qtd

Flow after dissolution (L3/T)

t

Time (T)

t*

Dimensionless time

tab

Time of arrival at downstream (T)

tmáx

Time of complete enclosure (T)

tucte

Time for constant u (T)

u

Solution front velocity (L/T)

v

Seepage velocity (L/T)

σ0

Mass per unit volume of soluble particle (M/L3)

Ø

Percentage in volume of soluble material

Notes

Acknowledgements

We wish to show our appreciation to Anthony Noel James for his great contribution to soluble materials in civil engineering.

References

  1. Baena CM (2011) Seepage analysis in dams founded on gypsiferous foundations (Análisis de la filtración en presas con cimientos yesíferos). Thesis, Universidad Politécnica de Madrid. http://oa.upm.es/7211/1/CARMEN_MARIA_BAENA_BERRENDERO.pdf
  2. Baena CM (2015) Dams founded on gypsiferous foundations. Numerical model of the dissolution process and design criteria (Presas sobre cimientos yesíferos. Modelación numérica del proceso de disolución y criterios de diseño). Premio José Torán VIII Convocatoria. SPANCOLD. https://spancold.es/Archivos/VIII_Premio_JT_Presas_Sobre_Cimientos_Yesiferos.pdf
  3. Baena CM, Toledo MA (2014) An experimentally verified model of the seepage progress due to dissolution of soluble particles in foundations subject to intergranular flow. Environ Earth Sci.  https://doi.org/10.1007/s12665-014-3243-4 CrossRefGoogle Scholar
  4. Calvino F, Costantino F, Mirri F (1981) Design criteria for a dam, reservoir and irrigation system on a Middle East evaporite formation. Bull Int Assoc Eng Geol 24:53–54CrossRefGoogle Scholar
  5. Carman PC (1956) Flow of gases through porous media. Butterworths Scientific Publications, LondonGoogle Scholar
  6. Flores CE, Rodríguez P (1967) Gypsum dissolution problems in dam sites. Bulletin of Venezuela Engineering Society of Soil Mechanics and Foundation, pp 3–14 (Problemas de disolución de yeso en algunos sitios de presas. Boletín de la Sociedad Venezolana de Mecánica de Suelo e Ingeniería de Fundaciones)Google Scholar
  7. Guzina BJ, Saric M, Petrovic N (1991) Seepage and dissolution at foundations of a dam during the first impounding of the reservoir. In: XVII Congress of ICOLD, (Viena) Q66 R78, pp 1459–1475Google Scholar
  8. James AN (1977) Calcium sulphate in the foundations of major embankment dams. Q J Eng Geol 11:332–333Google Scholar
  9. James AN (1992) Soluble materials in civil engineering. Ellis Horwood, New YorkGoogle Scholar
  10. James AN, Edworthy KJ (1985) The effects of water interactions on engineering structures. Hydrol Sci J 30(3):395–406CrossRefGoogle Scholar
  11. James AN, Kirkpatrick IM (1980) Design of foundations of dams containing soluble rocks and soils. Q J Eng Geol Hydrogeol 13(3):189–198CrossRefGoogle Scholar
  12. James AN, Lupton ARR (1978) Gypsum and anhydrite in foundations of hydraulic structures. Geótechnique 28(3):249–272CrossRefGoogle Scholar
  13. Johnson KS (2008) Gypsum-karst problems in constructing dams in the USA. Environ Geol 53:945–950CrossRefGoogle Scholar
  14. Kozeny J (1927) Ueber Kapillare Leitung des Wassers im Boden. Sitzungsber Akad Wiss Wien 136(2a):271–306Google Scholar
  15. Macau F, Riba O (1962) Location, characteristics and extension of gypsiferous terrains in Spain (Situación, características y extensión de los terrenos yesíferos en España). I Coloquio Internacional sobre las Obras Públicas en terrenos yesíferos. pp 157–184Google Scholar
  16. Milanovic PT (2000) Geological engineering in karst. Zebra, BelgradeGoogle Scholar
  17. Milanovic PT (2004) Water resources engineering in karst. CRC, Boca RatonCrossRefGoogle Scholar
  18. Nernst WZ (1904) Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen. Phys Chem 47:52–55Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jesús Granell Ingenieros Consultores, S.L.MadridSpain
  2. 2.Universidad Politécnica de MadridMadridSpain

Personalised recommendations