A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection

Abstract

Water quality evaluation is critically important for the protection and sustainable management of groundwater resources, which are variably vulnerable to ever-increasing human-induced physical and chemical pressures (e.g., overexploitation and pollution of aquifers) and to climate change/variability. Preceding studies have applied a variety of tools and techniques, ranging from conventional to modern, for characterization of the groundwater quality worldwide. Recently, geographic information system (GIS) technology has been successfully integrated with the advanced statistical/geostatistical methods, providing improved interpretation capabilities for the assessment of the water quality over different spatial scales. This review intends to examine the current standing of the GIS-integrated statistical/geostatistical methods applied in hydrogeochemical studies. In this paper, we focus on applications of the time series modeling, multivariate statistical/geostatistical analyses, and artificial intelligence techniques used for groundwater quality evaluation and aquifer vulnerability assessment. In addition, we provide an overview of salient groundwater quality indices developed over the years and employed for the assessment of groundwater quality across the globe. Then, limitations and research gaps of the past studies are outlined and perspectives of the future research needs are discussed. It is revealed that comprehensive applications of the GIS-integrated advanced statistical methods are generally rare in groundwater quality evaluations. One of the major challenges in future research will be implementing procedures of statistical methods in GIS software to enhance analysis capabilities for both spatial and temporal data (multiple sites/stations and time frames) in a simultaneous manner.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abbasi T, Abbasi SA (2012) Water quality indices. Elsevier, Oxford, UK, p 384

    Google Scholar 

  2. Abbasi S, Mohammadi K, Kholghi MK, Howard K (2013) Aquifer vulnerability assessments using DRASTIC, weights of evidence and the analytic element method. Hydrol Sci J 58(1):186–197

    Google Scholar 

  3. Adeloye AJ, Montaseri M (2002) Preliminary streamflow data analyses prior to water resources planning study. Hydrol Sci J 47(5):679–692

    Google Scholar 

  4. Adhikary PP, Dash CJ, Chandrasekharan H, Rajput TBS, Dubey SK (2012) Evaluation of groundwater quality for irrigation and drinking using GIS and geostatistics in a peri-urban area of Delhi, India. Arab J Geosci 5:1423–1434

    Google Scholar 

  5. Ağca N, Karanlık S, Ödemiş B (2014) Assessment of ammonium, nitrate, phosphate, and heavy metal pollution in groundwater from Amik Plain, southern Turkey. Environ Monit Assess 186(9):5921–5934

    Google Scholar 

  6. Aguilar JB, Orban P, Dassargues A, Brouyère S (2007) Identification of groundwater quality trends in a chalk aquifer threatened by intensive agriculture in Belgium. Hydrogeol J 15:1615–1627

    Google Scholar 

  7. Ahmed S (2006) Application of Geostatistics in Hydrosciences. In: Thangarajan M (ed) Groundwater resource evaluation, augmentation, contamination, restoration, modeling and management. Capital Publishing Company, New Delhi, pp 78–111

    Google Scholar 

  8. Aller L, Bennett T, Lehr JH, Petty RJ (1985) DRASTIC: a standardized system for evaluating ground water potential using hydrogeological settings. In: EPA/600/285/018, Environmental Research Laboratory. US Environmental Protection Agency, Ada

  9. Alley WM (1993) Regional ground-water quality. Wiley, New York, p 634

    Google Scholar 

  10. Alther GA (1979) A simplified statistical sequence applied to routine water quality analysis—a case history. Ground Water 17(6):556–561

    Google Scholar 

  11. Antonakos AK, Lambrakis NL (2007) Development and testing of three hybrid methods for assessment of aquifer vulnerability to nitrates, based on the DRASTIC model, an example from NE Korinthia, Greece. J Hydrol 333(2–4):288–304

    Google Scholar 

  12. APHA-AWWA-WEF (2017) Standard methods for the examination of water and wastewater, 23rd edn. American Public Health Association (APHA)-American Water Works Association (AWWA)-Water Environment Federation (WEF), Washington, DC

    Google Scholar 

  13. Arslan H (2017) Determination of temporal and spatial variability of groundwater irrigation quality using geostatistical techniques on the coastal aquifer of Çarşamba Plain, Turkey, from 1990 to 2012. Environ Earth Sci 76:38. https://doi.org/10.1007/s12665-016-6375-x

    Article  Google Scholar 

  14. ASCE Task Committee (1990a) Review of geostatistics in geohydrology. I: Basic concepts. Journal of Hydraul Eng ASCE 116(5):612, https://doi.org/10.1061/(ASCE)0733-9429(1990)116:5(612)

    Article  Google Scholar 

  15. ASCE Task Committee (1990b) Review of geostatistics in geohydrology. II: applications. J Hydraul Eng ASCE 116(5):612. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:5(633)

  16. ASCE Task Committee (2000) Artificial neural networks in hydrology—I: preliminary concepts. J Hydrol Eng ASCE 5(2):115–123

    Google Scholar 

  17. Ashley RP, Lloyd JW (1978) An example of the use of factor analysis and cluster analysis in groundwater chemistry interpretation. J Hydrol 39:355–364

    Google Scholar 

  18. Assaf H, Saadeh M (2009) Geostatistical assessment of groundwater nitrate contamination with reflection on DRASTIC vulnerability assessment: the case of the Upper Litani Basin, Lebanon. Water Resour Manag 23:775–796

    Google Scholar 

  19. Ayuso SV, Acebes P, López-Archilla AI, Montes C, Guerrero MC (2009) Environmental factors controlling the spatiotemporal distribution of microbial communities in a coastal, sandy aquifer system (Doñana, southwest Spain). Hydrogeol J 17:767–780

    Google Scholar 

  20. Babiker IS, Mohamed MMA, Hiyama T (2007) Assessing groundwater quality using GIS. Water Resour Manag 21:699–715

    Google Scholar 

  21. Backman B, Bodiš D, Lahermo P, Rapant S, Tarvainen T (1998) Application of a groundwater contamination index in Finland and Slovakia. Environ Geol 36(1–2):55–64

    Google Scholar 

  22. Banoeng-Yakubo B, Yidana SM, Emmanuel N, Akabzaa T, Asiedu D (2009) Analysis of groundwater quality using water quality index and conventional graphical methods: the Volta region, Ghana. Environ Earth Sci 59(4):867–879

    Google Scholar 

  23. Barca E, Passarella G (2008) Spatial evaluation of the risk of groundwater quality degradation. A comparison between disjunctive kriging and geostatistical simulation. Environ Monit Assess 137:261–273

    Google Scholar 

  24. Bárdossy A (2011) Interpolation of groundwater quality parameters with some values below the detection limit. Hydrol Earth Syst Sci 15:2763–2775

    Google Scholar 

  25. Bárdossy A, Kundzewicz ZW (1990) Geostatistical methods for detection of outliers in groundwater quality spatial fields. J Hydrol 115:343–359

    Google Scholar 

  26. Berzas JJ, Garcia LF, Rodriguez RC, Martinalvarez PJ (2000) Evolution of the water quality of a managed natural wetland: Tablas de Daimiel National Park (Spain). Water Res 34(12):3161–3170

    Google Scholar 

  27. Bethea RM, Rhinehart RR (1991) Applied engineering statistics. Marcel Dekker, Inc., New York

    Google Scholar 

  28. Bhuiyan MAH, Bodrud-Doza M, Islam ARMT, Rakib MA, Rahman MS, Ramanathan AL (2016) Assessment of groundwater quality of Lakshimpur district of Bangladesh using water quality indices, geostatistical methods, and multivariate analysis. Environ Earth Sci 75:1020. https://doi.org/10.1007/s12665-016-5823-y

    Article  Google Scholar 

  29. Bjerg PL, Christensen TH (1992) Spatial and temporal small-scale variation in groundwater quality of a shallow sandy aquifer. J Hydrol 131:133–149

    Google Scholar 

  30. Boateng TK, Opoku F, Acquaah SO, Akoto O (2016) Groundwater quality assessment using statistical approach and water quality index in Ejisu-Juaben Municipality, Ghana. Environ Earth Sci 75:489. https://doi.org/10.1007/s12665-015-5105-0

    Article  Google Scholar 

  31. Bodrud-Doza Md, Islam ARMT, Ahmed F, Das S, Saha N, Rahman MS (2016) Characterization of groundwater quality using water evaluation indices, multivariate statistics and geostatistics in central Bangladesh. Water Sci 30:19–40

    Google Scholar 

  32. Bondu R, Cloutier V, Rosa E, Benzaazoua M (2016) A review and evaluation of the impacts of climate change on geogenic arsenic in groundwater from fractured bedrock aquifers. Water Air Soil Pollut 227:296. https://doi.org/10.1007/s11270-016-2936-6

    Article  Google Scholar 

  33. Bondu R, Cloutier V, Rosa E, Benzaazoua M (2017) Mobility and speciation of geogenic arsenic in bedrock groundwater from the Canadian Shield in western Quebec, Canada. Sci Total Environ 574:509–519

    Google Scholar 

  34. Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B 26(2):211–252

    Google Scholar 

  35. Box GEP, Hunter WG, Hunter JS (1978) Statistics for experimenters: an introduction to design, data analysis, and model building. Wiley Interscience, New York

    Google Scholar 

  36. Boy-Roura M, Nolan BT, Menció A, Mas-Pla J (2013) Regression model for aquifer vulnerability assessment of nitrate pollution in the Osona region (NE Spain). J Hydrol 505:150–162

    Google Scholar 

  37. Bras RL, Rodriguez-Iturbe I (1985) Random functions and hydrology. Addison-Wesley, Reading

    Google Scholar 

  38. Bronson KF, Malapati A, Booker JD, Scanlon BR, Hudnall WH, Schurbert AM (2009) Residual soil nitrate in irrigated Southern High Plains cotton fields and Ogallala groundwater nitrate. J Soil Water Conserv 64(2):98–104

    Google Scholar 

  39. Brown CE (1998) Applied multivariate statistics in geohydrology and related sciences, 1st edn. Springer, New York

    Google Scholar 

  40. Buragohain M, Bhuyan B, Sarma HP (2010) Seasonal variations of lead, arsenic, cadmium and aluminium contamination of groundwater in Dhemaji district, Assam, India. Environ Monit Assess 170:345–351

    Google Scholar 

  41. Burrough PA, McDonnell RA (1998) Principles of geographical information systems. Oxford University Press, Oxford, 333 pp

    Google Scholar 

  42. Busico G, Kazakis N, Colombani N, Mastrocicco M, Voudouris K, Tedesco D (2017) A modified SINTACS method for groundwater vulnerability and pollution risk assessment in highly anthropized regions based on NO3 and SO4 2– concentrations. Sci Total Environ 609:1512–1523

    Google Scholar 

  43. Busico G, Cuoco E, Kazakis N, Colombani N, Mastrocicco M, Tedesco D, Voudouris K (2018) Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace element occurrence in Campania Plain, Southern Italy. Environ Pollut 234:260–269

    Google Scholar 

  44. Cairns SH, Dickson KL, Atkinson SF (1997) An examination of measuring selected water quality trophic indicators with SPOT satellite HRV data. Photogramm Eng Remote Sens 63(3):263–265

    Google Scholar 

  45. Canadian Council of Ministers of the Environment (2001) Canadian water quality guidelines for the protection of aquatic life. CCME Water Quality Index 1.0, Technical Report, in Canadian Environmental Quality Guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg, Canada

  46. Candela L, Olea RA, Custodio E (1988) Lognormal kriging for the assessment of reliability in groundwater quality control observation networks. J Hydrol 103:67–84

    Google Scholar 

  47. Castrignanò A, Giugliarini L, Risaliti R, Martinelli N (2000) Study of spatial relationships among some soil physicochemical properties of a field in central Italy using multivariate geostatistics. Geoderma 97:39–60

    Google Scholar 

  48. Chachadi AG, Lobo-Ferreira JP (2001) Seawater intrusion vulnerability mapping of aquifers using the GALDIT method. In: Proceedings of the workshop on modelling in hydrogeology, Anna University, Chennai, pp 143–156

  49. Chang K-T (2002) Introduction to geographic information systems. Tata McGraw-Hill Publishing Company Ltd., New Delhi, p 348

    Google Scholar 

  50. Chaudhuri S, Ale S, Delaune P, Rajan N (2012) Spatio-temporal variability in groundwater nitrate concentration in Texas: 1960–2010. J Environ Qual 41:1806–1817

    Google Scholar 

  51. Chen H, Druliner AD (1988) Agricultural chemical contamination of ground water in six areas of the high plains aquifer, Nebraska. National Water Summary 1986—hydrologic events and ground-water quality, water-supply Paper 2325. U.S. Geological Survey, Reston

  52. Chen L, Feng Q (2013) Geostatistical analysis of temporal and spatial variations in groundwater levels and quality in the Minqin Oasis, Northwest China. Environ Earth Sci 70(3):1367–1378

    Google Scholar 

  53. Chen Y, Takara K, Cluckie ID, Smedt FHD (eds) (2004) GIS and remote sensing in hydrology, Water resources and environment. IAHS Publication No. 289. IAHS Press, Wallingford, p 422

  54. Chou CJ (2006) Assessing spatial, temporal, and analytical variation of groundwater chemistry in a large nuclear complex, USA. Environ Monit Assess 119:571–598

    Google Scholar 

  55. Civita M, De Maio M (2004) Assessing and mapping groundwater vulnerability to contamination: the Italian “combined” approach. Geofísica Internacional 43(4):513–532

    Google Scholar 

  56. Clark D (1975) Understanding canonical correlation analysis. Concepts and techniques in modern geography No. 3, geo abstracts. University of East Anglia, Norwich

  57. Clarke RT (1998) Stochastic processes for water scientists: development and applications. Wiley, New York

    Google Scholar 

  58. Cloutier V, Lefebvre R, Therrien R, Savard MM (2008) Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J Hydrol 353:294–313

    Google Scholar 

  59. Cohen DB, Fisher C, Reid ML (1986) Ground-water contamination by toxic substances: a california assessment. In: Garner WY, Honeycutt RC, Nigg HN (eds) Evaluation of pesticides in ground water, ACS Symposium Series 315. American Chemical Society, Washington, DC, pp. 499–529

  60. Collins WD (1923) Graphic representation of water analyses. Ind Eng Chem 15(4):394

    Google Scholar 

  61. Cooley WW, Lohnes PR (1971) Multivariate data analysis. Wiley, New York

    Google Scholar 

  62. Cooper RM, Istok JD (1988a) Geostatistics applied to groundwater contamination. I: methodology. J Environ Engin ASCE 111(2):270–286

    Google Scholar 

  63. Cooper RM, Istok JD (1988b) Geostatistics applied to groundwater contamination. II. Appl J Environ Eng ASCE 111(2):287–299

    Google Scholar 

  64. Council of Canadian Academies (2009) The sustainable management of groundwater in canada. Report of the expert panel on groundwater. Council of Canadian Academies, Ottawa

    Google Scholar 

  65. Cryer JD (1986) Time series analysis. PWS Publishers, Duxbury Press, Boston

    Google Scholar 

  66. D’Agostino V, Greene EA, Passarella G, Vurro M (1998) Spatial and temporal study of nitrate concentration in groundwater by means of coregionalization. Environ Geol 36(3–4):285–295

    Google Scholar 

  67. Dalton MG, Upchurch SB (1978) Interpretation of hydrochemical facies by factor analysis. Ground Water 16(4):228–233

    Google Scholar 

  68. David M (1977) Geostatistical ore reserve estimation. Elsevier Scientific Publishing Company, New York, p 364

    Google Scholar 

  69. David M, Dagbert M (1975) Lakeview revisited: variograms and correspondence analysis-new tools for the understanding of geochemical data. In: Proceedings of the 5th international geochemical exploration symposium, geochemical exploration, pp 163–181

  70. Davies PJ, Crosbie RS (2018) Mapping the spatial distribution of chloride deposition across Australia. J Hydrol 561:76–88

    Google Scholar 

  71. Davis JC (1986) Statistics and data analysis in geology, 2nd edn. Wiley, New York

    Google Scholar 

  72. Dawdy DR, Feth JH (1967) Applications of factor analysis in study of chemistry of ground water quality, Mojave River Valley, California. Water Resour Res 3(2):505–510

    Google Scholar 

  73. Dean JD, Huyakorn PS, Donigian AS Jr, Voos KA, Schanz RW, Meeks YJ, Carsel RF (1989) Risk of unsaturated/saturated transport and transformation of chemical concentrations (RUSTIC). Volumes I and II. EPA/600/3–89/048a. United States Environmental Protection Agency, Athens

    Google Scholar 

  74. Delhomme JP (1978) Kriging in hydrosciences. Adv Water Resour 1:251–266

    Google Scholar 

  75. Denny SC, Allen DM, Journeay JM (2007) DRASTIC-Fm: a modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Columbia, Canada. Hydrogeol J 15:483–493

    Google Scholar 

  76. Deutsch WJ (1997) Groundwater geochemistry: fundamentals and applications to contamination. CRC Press LLC, Boca Raton, p 221

    Google Scholar 

  77. Dillon R, Goldstein M (1984) multivariate analyses: methods and applications. Wiley, New York

    Google Scholar 

  78. Dixon B (2005a) Groundwater vulnerability mapping: A GIS and fuzzy rule based integrated tool. J Appl Geogr 25:327–347

    Google Scholar 

  79. Dixon B (2005b) Applicability of neuro-fuzzy techniques in predicting groundwater vulnerability: a GIS-based sensitivity analysis. J Hydrol 309(1–4):17–38

    Google Scholar 

  80. Dixon B (2009) A case study using support vector machines, neural networks and logistic regression in a GIS to identify wells contaminated with NO3-N. Hydrogeol J 17:1507–1520

    Google Scholar 

  81. Doerfliger N, Jeannin PY, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39(2):165–176

    Google Scholar 

  82. Dojlido J, Raniszewsk IJ, Woyciechowska J (1994) Water quality index —application for rivers in Vistula river basin in Poland. Water Sci Technol 30:57–64

    Google Scholar 

  83. Dokou Z, Kourgialas NN, Karatzas GP (2015) Assessing groundwater quality in Greece based on spatial and temporal analysis. Environ Monit Assess 187:774. https://doi.org/10.1007/s10661-015-4998-0

    Article  Google Scholar 

  84. Dragon K (2006) Application of factor analysis to study contamination of a semi-confined aquifer (Wielkopolska Buried Valley aquifer, Poland). J Hydrol 331:272–279

    Google Scholar 

  85. Drozdov OA, Shepelevskii AA (1946) The theory of interpolation in a stochastic field of meteorological elements and its application to meteorological maps and network rationalization problems (in Russian). Trudy NIU GUGMS Series, 1(13), Russian Hydrological and Meteorological Service, Russia

  86. Eheart JW, Cieniawski SE, Ranjithan S (1993) Genetic-algorithm-based design of groundwater quality monitoring system. WRC Research Report No. 218, Water Resources Center, University of Illinois at Urbana-Champaign, 205 North Mathews. Avenue Urbana Illinois 61801, p 50

  87. Elçi A, Ayvaz MT (2014) Differential-evolution algorithm based optimization for the site selection of groundwater production wells with the consideration of the vulnerability concept. J Hydrol 511:736–749

    Google Scholar 

  88. El-Fadel M, Tomaszkiewicz M, Adra Y, Sadek S, Najm MA (2014) GIS-based assessment for the development of a groundwater quality index towards sustainable aquifer management. Water Resour Manag 28:3471–3487

    Google Scholar 

  89. El-Shahat MF, Sadek MA, Embaby AA, Salem WM, Mohamed FA (2017) Hydrochemical and multivariate analysis of groundwater quality in the northwest of Sinai, Egypt. J Water Health. https://doi.org/10.2166/wh.2017.276

    Article  Google Scholar 

  90. Enfield CG, Carsel RF, Cohen SZ, Phan T, Walters DM (1982) Approximating pollutant transport to ground water. Ground Water 20(6):711–722

    Google Scholar 

  91. Enwright N, Hudak PF (2009) Spatial distribution of nitrate and related factors in the high plains aquifer. Texas Environ Geol 58:1541–1548

    Google Scholar 

  92. Farnham M, Klaus JS, Ashok KS, Johannesson KH (2000) Deciphering groundwater flow systems in Oasis Valley, Nevada, using trace element chemistry, multivariate statistics, and geographical information system. Math Geol 32(8):943–968

    Google Scholar 

  93. Farnham M, Singh AK, Stetzenbach KJ, Johannesson KH (2002) Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemometr Intell Lab Syst 60:265–281

    Google Scholar 

  94. Felmy AR, Girvin DC, Jenne EA (1983) MINTEQ: A Computer Program for Calculating Aqueous Geochemical Equilibria. EPA/600/3–84/032, Pacific Northwest Laboratory, United States Environmental Protection Agency (USEPA), Washington, DC

  95. Ferguson G, Gleeson T (2012) Vulnerability of coastal aquifers to groundwater use and climate change. Nat Clim Change 2:342–345

    Google Scholar 

  96. Fijani E, Nadiri AA, Moghaddam AA, Tsai FT-C, Dixon B (2013) Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh-Bonab plain aquifer, Iran. J Hydrol 503:89–100

    Google Scholar 

  97. Forina M, Armanino C, Raggio V (2002) Clustering with dendrograms on interpretation variables. Anal Chim Acta 454(1):13–19

    Google Scholar 

  98. Foster SSD (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: Van Duijvenbooden W, and Waegeningh HG (eds), Vulnerability of soil and groundwater to pollutants. In: TNO committee on hydrological research, the Hague, Proc. Inf., vol 38, pp 69–86

  99. Frans L (2008) Trends of pesticides and nitrate in ground water of the Central Columbia Plateau, Washington, 1993–2003. J Environ Qual 37:273–280

    Google Scholar 

  100. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Inc., Englewood Cliffs

    Google Scholar 

  101. Gan Y, Zhao K, Deng Y, Liang X, Ma T, Wang Y (2018) Groundwater flow and hydrogeochemical evolution in the Jianghan Plain, central China. Hydrogeol J 26(5):1609–1623

    Google Scholar 

  102. Gandin LS (1965) Objective analysis of meteorological fields. Israel Program for Scientific Translations, Jerusalem, p 242

    Google Scholar 

  103. Gangadharan R, Nila Rekha P, Vinoth S (2016) Assessment of groundwater vulnerability mapping using AHP method in coastal watershed of shrimp farming area. Arab J Geosci 9: 107. https://doi.org/10.1007/s12517-015-2230-8

    Article  Google Scholar 

  104. Gemitzi A, Petalas C, Tsihrintzis VA, Pisinaras V (2006) Assessment of groundwater vulnerability to pollution: a combination of GIS, fuzzy logic and decision making techniques. Environ Geol 49:653–673

    Google Scholar 

  105. Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090

    Google Scholar 

  106. Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52(12):2749–2765

    Google Scholar 

  107. Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold, New York

    Google Scholar 

  108. Giles BD, Flocas AA (1984) Air temperature variation in Greece, Part-I: persistence, trend and fluctuations. Int J Climatol 4:531–539

    Google Scholar 

  109. Giri S, Singh G, Gupta SK, Jha VN, Tripathi RM (2010) An evaluation of metal contamination in surface and groundwater around a proposed uranium mining site, Jharkhand, India. Mine Water Environ 29(3):225–234

    Google Scholar 

  110. Gleeson T, VanderSteen J, Sophocleous MA, Taniguchi M, Alley WM, Allen DM, Zhou Y (2010) Groundwater sustainability strategies. Nat Geosci 3:378–379

    Google Scholar 

  111. Gogu RC, Dassargues A (2000) Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ Geol 39(6):549–559

    Google Scholar 

  112. Goldscheider N, Klute M, Sturm S, Hotzl H (2000) The PI method—a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Z Angew Geol 46(3):157–166

    Google Scholar 

  113. Gong X, Richman MB (1995) On the application of cluster analysis to growing season precipitation data in North America East of the Rockies. J Clim 8:897–931

    Google Scholar 

  114. Goodchild MF, Parks BO, Steyaert LT (eds) (1993) Environmental modeling with GIS. Oxford University Press, New York

    Google Scholar 

  115. Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89:1–45

    Google Scholar 

  116. Goovaerts P, AvRuskin G, Meliker J, Slotnick M, Jacquez G, Nriagu J (2005) Geostatistical modeling of the spatial variability of arsenic in groundwater of southeast Michigan. Water Resour Res 41:W07013. https://doi.org/10.1029/2004WR003705

    Article  Google Scholar 

  117. Gorgij AD, Kisi O, Moghaddam AA, Taghipour A (2017) Groundwater quality ranking for drinking purposes, using the entropy method and the spatial autocorrelation index. Environ Earth Sci 76:269. https://doi.org/10.1007/s12665-017-6589-6

    Article  Google Scholar 

  118. Güler C, Thyne GD (2004a) Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells-Owens Valley area, southeastern California, USA. J Hydrol 285(1–4):177–198

    Google Scholar 

  119. Güler C, Thyne GD (2004b) Delineation of hydrochemical facies distribution in a regional groundwater system by means of fuzzy c-means clustering. Water Resour Res 40(12):W12503. https://doi.org/10.1029/2004WR003299

    Article  Google Scholar 

  120. Güler C, Thyne GD, McCray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10(4):455–474

    Google Scholar 

  121. Güler C, Kurt MA, Alpaslan M, Akbulut C (2012) Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. J Hydrol 414–415:435–451

    Google Scholar 

  122. Güler C, Thyne GD, Tağa H, Yıldırım Ü (2017) Processes governing alkaline groundwater chemistry within a fractured rock (ophiolitic mélange) aquifer underlying a seasonally inhabited headwater area in the Aladağlar Range (Adana, Turkey). Geofluids. https://doi.org/10.1155/2017/3153924 (article ID 3153924)

    Article  Google Scholar 

  123. Gupta A, Kamble T, Machiwal D (2017) Comparison of ordinary and Bayesian kriging techniques in depicting rainfall variability in arid and semi-arid regions of northwest India. Environ Earth Sci 76:512. https://doi.org/10.1007/s12665-017-6814-3

    Article  Google Scholar 

  124. Gurdak JJ, McMahon PB, Bruce BW (2012) Vulnerability of groundwater quality to human activity and climate change and variability, high plains aquifer, USA. In: Treidel H, Martin-Bordes JL, Gurdak JJ (eds) Climate Change effects on groundwater resources—a global synthesis of findings and recommendations. Taylor & Francis Group, London, pp 145–168

    Google Scholar 

  125. Gurnell AM, Montgomery DR (eds) (2000) Hydrological applications of GIS. Wiley, Chichester, p 176

    Google Scholar 

  126. Haan CT (1977) Statistical methods in hydrology. Iowa State University Press, Iowa

    Google Scholar 

  127. Hanh TM, Sthiannopkao P, The Ba S, D. and Kim K-W (2011) Development of water quality indexes to identify pollutants in Vietnam’s surface water. J Environ Eng ASCE 137(4):273–283

    Google Scholar 

  128. Hardy A (1996) On the number of clusters. Comput Stat Data Anal 23:83–96

    Google Scholar 

  129. Hartigan A (1975) Clustering algorithms. Wiley, New York

    Google Scholar 

  130. Hassan MM, Atkins PJ (2007) Arsenic risk mapping in Bangladesh: A simulation technique of cokriging estimation from regional count data. J Environ Sci Health Part A Toxic/Hazard Substan Environ Engin 42(12):1719–1728

    Google Scholar 

  131. Helsel DR, Frans LM (2006) Regional Kendall test for trend. Environ Sci Technol 40(13):4066–4073

    Google Scholar 

  132. Helstrup T, Jørgensen NO, Banoeng-Yakubo B (2007) Investigation of hydrochemical characteristics of groundwater from the Cretaceous-Eocene limestone aquifer in southern Ghana and southern Togo using hierarchical cluster analysis. Hydrogeol J 15:977–989

    Google Scholar 

  133. Hem JD (1970) Study and interpretation of the chemical characteristics of natural water, 2nd edition, United States Geological Survey Water-Supply Paper 1473, Washington DC

  134. Hem JD (1985) Study and Interpretation of the chemical characteristics of natural water. 3rd edition, United States Geological Survey Water-Supply Paper 2254, Washington DC

  135. Horton RK (1965) An index number system for rating water quality. J Water Pollut Control Fed 37(3):300–306

    Google Scholar 

  136. Hosseini SM, Mahjouri N (2014) Developing a fuzzy neural network-based support vector regression (FNN-SVR) for regionalizing nitrate concentration in groundwater. Environ Monit Assess 186:3685–3699

    Google Scholar 

  137. Hotelling H (1936) Relations between two sets of variates. Biometrika 28:312–377

    Google Scholar 

  138. Hoyer BE, Hallberg GR (1991) Ground water vulnerability regions of iowa, special map 11. Iowa Department of Natural Resources, Iowa City

    Google Scholar 

  139. Hudak PF (2000a) Sulfate and chloride concentrations in Texas aquifer. Environ Int 26:55–61

    Google Scholar 

  140. Hudak PF (2000b) Regional trends in nitrate content of Texas groundwater. J Hydrol 228:37–47

    Google Scholar 

  141. Hudak PF (2001) Water hardness and sodium trends in Texas aquifers. Environ Monit Assess 68:177–185

    Google Scholar 

  142. Iskandar I, Koike K (2011) Distinguishing potential sources of arsenic released to groundwater around a fault zone containing a mine site. Environ Earth Sci 63:595–608

    Google Scholar 

  143. Iskandar I, Koike K, Sendjaja P (2012) Identifying groundwater arsenic contamination mechanisms in relation to arsenic concentrations in water and host rocks. Environ Earth Sci 65:2015–2026

    Google Scholar 

  144. Istok JD, Cooper RM (1988) Geostatistics applied to groundwater contamination. III: global estimates. J Environ Engin ASCE 111(2):915–928

    Google Scholar 

  145. Istok JD, Rautman CA (1996) Probabilistic assessment of ground-water contamination: 2. Results of case study. Ground Water 34(6):1050–1064

    Google Scholar 

  146. Istok JD, Smyth JD, Flint FL (1993) Multivariate geostatistical analysis of ground-water contamination: a case history. Ground Water 31(1):63–74

    Google Scholar 

  147. Izenman AJ (2013) Modern multivariate statistical techniques: regression, classification, and manifold learning, 2nd edn. Springer, New York

    Google Scholar 

  148. Jacobs J, Testa S (2004) Overview of chromium (VI) in the environment: background and history. In: Guertin J, Jacobs J, Avakian C (eds) Chromium (VI) handbook. CRC Press, New York. http://www.engr.uconn.edu/~baholmen/docs/ENVE290W/National%20Chromium%20Files%20From%20Luke/Cr(VI)%20Handbook/L1608_C01.pdf. Accessed 21 June 2017

  149. Jamshidzadeh Z, Barzi MT (2018) Groundwater quality assessment using the potability water quality index (PWQI): a case in the Kashan plain, Central Iran. Environ Earth Sci 77:59. https://doi.org/10.1007/s12665-018-7237-5

    Article  Google Scholar 

  150. Jang C-S (2013) Use of multivariate indicator kriging methods for assessing groundwater contamination extents for irrigation. Environ Monit Assess 185:4049–4061

    Google Scholar 

  151. Jang C-S, Liu C-W, Lu KL, Lin CC (2007) Delimitation of arsenic-contaminated groundwater using risk-based indicator approaches around blackfoot disease hyperendemic areas of southern Taiwan. Environ Monit Assess 134:293–304

    Google Scholar 

  152. Jang C-S, Chen C-F, Liang C-P, Chen J-S (2016) Combining groundwater quality analysis and a numerical flow simulation for spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain. J Hydrol 533:541–556

    Google Scholar 

  153. Javadi S, Hashemy SM, Mohammadi K, Howard KWF, Neshat A (2017) Classification of aquifer vulnerability using K-means cluster analysis. J Hydrol 549:27–37

    Google Scholar 

  154. Jha MK, Chowdhury A, Chowdary VM, Peiffer S (2007) Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resour Manag 21(2):427–467

    Google Scholar 

  155. Johnson RA, Wichern DW (1992) Applied multivariate statistical analysis, 3rd edn. Prentice-Hall International, Englewood Cliffs, p 642

    Google Scholar 

  156. Jones AL, Smart PL (2005) Spatial and temporal changes in the structure of groundwater nitrate concentration time series (1935–1999) as demonstrated by autoregressive modeling. J Hydrol 310:201–215

    Google Scholar 

  157. Journel A (1974) Geostatistics for conditional simulation of orebodies. Econ Geol 69(5):673–687

    Google Scholar 

  158. Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, London, p 600

    Google Scholar 

  159. Jovein EB, Hosseini SM (2017) Predicting saltwater intrusion into aquifers in vicinity of deserts using spatio-temporal kriging. Environ Monit Assess 189:81. https://doi.org/10.1007/s10661-017-5795-8

    Article  Google Scholar 

  160. Kagan RL (1967) Some problems relative to the interpretation of rainfall data (in Russian). Trudy GGO 208:64–75

    Google Scholar 

  161. Kallio MP, Mujunen SP, Hatzimihalis G, Koutoufides P, Minkkinen P, Wilki PJ, Connor MA (1999) Multivariate data analysis of key pollutants in sewage samples: a case study. Anal Chim Acta 393(1–3):181–191

    Google Scholar 

  162. Kaown D, Hyun Y, Bae G-O, Oh CW, Lee K-K (2012) Evaluation of spatio-temporal trends of groundwater quality in different land uses using Kendall test. Geosci J 16(1):65–75

    Google Scholar 

  163. Karami S, Madani H, Katibeh H, Marj AF (2018) Assessment and modeling of the groundwater hydrogeochemical quality parameters via geostatistical approaches. Appl Water Sci 8:23. https://doi.org/10.1007/s13201-018-0641-x

    Article  Google Scholar 

  164. Karanth KR (1987) Ground water assessment: development and management. Tata McGraw-Hill Publishing Company Limited, New Delhi, p 720

    Google Scholar 

  165. Kavouri K, Plagnes V, Tremoulet J, Dorfliger N, Rejiba F, Marchet P (2011) PaPRIKa: a method for estimating karst resource and source vulnerability—application to the Ouysse karst system (southwest France). Hydrogeol J 19:339–353

    Google Scholar 

  166. Kazakis N, Voudouris KS (2015) Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: modifying the DRASTIC method using quantitative parameters. J Hydrol 525:13–25

    Google Scholar 

  167. Kazakis N, Kantiranis N, Voudouris KS, Mitrakas M, Kaprara E, Pavlou A (2015) Geogenic Cr oxidation on the surface of mafic minerals and the hydrogeological conditions influencing hexavalent chromium concentrations in groundwater. Sci Total Environ 514:224–238

    Google Scholar 

  168. Kazakis N, Kantiranis N, Kalaitzidou K, Kaprara Ε, Mitrakas M, Frei R, Vargemezis G, Tsourlos P, Zouboulis A, Filippidis A (2017) Origin of hexavalent chromium in groundwater: the example of Sarigkiol Basin, Northern Greece. Sci Total Environ 593–594:552–566

    Google Scholar 

  169. Kazakis N, Spiliotis M, Voudouris K, Pliakas FK, Papadopoulos B (2018a) A fuzzy multicriteria categorization of the GALDIT method to assess seawater intrusion vulnerability of coastal aquifers. Sci Total Environ 621:552–566

    Google Scholar 

  170. Kazakis N, Chalikakis K, Mazzilli N, Ollivier C, Manakos A, Voudouris K (2018b) Management and research strategies of karst aquifers in Greece: Literature overview and exemplification based on hydrodynamic modelling and vulnerability assessment of a strategic karst aquifer. Sci Total Environ 643:592–609

    Google Scholar 

  171. Kendall MG (1973) Time series. Charles Griffin and Co. Ltd., London

    Google Scholar 

  172. Ketata M, Gueddari M, Bouhlila R (2012) Use of geographical information system and water quality index to assess groundwater quality in El Khairat deep aquifer (Enfidha, Central East Tunisia). Arab J Geosci 5:1379–1390

    Google Scholar 

  173. Khan HH, Khan A, Ahmed S, Perrin J (2011) GIS-based impact assessment of land-use changes on groundwater quality: study from a rapidly urbanizing region of South India. Environ Earth Sci 63:1289–1302

    Google Scholar 

  174. Kim TH, Chung SY, Park N, Hamm S-Y, Lee SY, Kim B-W (2012) Combined analyses of chemometrics and kriging for identifying groundwater contamination sources and origins at the Masan coastal area in Korea. Environ Earth Sci 67(5):1373–1388

    Google Scholar 

  175. Kissel DE, Bidwell OW, Kientz JF (1982) Leaching classes in Kansas Soils. Bulletin No. 641. Kansas State University, Manhattan

    Google Scholar 

  176. Koh E-H, Lee SH, Kaown D, Moon HS, Lee E, Lee K-K, Kang BR (2017) Impacts of land use change and groundwater management on long-term nitrate-nitrogen and chloride trends in groundwater of Jeju Island, Korea. Environ Earth Sci, 76: 176. https://doi.org/10.1007/s12665-017-6466-3

    Article  Google Scholar 

  177. Konikow L, Kendy L (2005) Groundwater depletion: a global problem. Hydrogeol J 13(1):317–320

    Google Scholar 

  178. Kumar S, Machiwal D, Dayal D (2017) Spatial modeling of rainfall trends using satellite datasets and geographic information system. Hydrol Sci J 62(10):1636–1653

    Google Scholar 

  179. Kurumbein WC, Graybill FA (1965) An introduction to statistical models in geology. McGraw-Hill, New York

    Google Scholar 

  180. Lambrakis N, Antonakos A, Panagopoulos G (2004) The use of multicomponent statistical analysis in hydrogeological environmental research. Water Res 38:1862–1872

    Google Scholar 

  181. Langelier W, Ludwig H (1942) Graphical methods for indicating the mineral character of natural waters. J Am Water Assoc 34:335–352

    Google Scholar 

  182. Leite NK, Stolberg J, da Cruz SP, de Tavela OA, Safanelli JL, Marchini HR, Exterkoetter R, Leite GMC, Krusche AV, Johnson MS (2018) Hydrochemistry of shallow groundwater and springs used for potable supply in Southern Brazil. Environ Earth Sci 77:80. https://doi.org/10.1007/s12665-018-7254-4

    Article  Google Scholar 

  183. Li P, Wu J, Qian H, Lyu X, Liu H (2014) Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China. Environ Geochem Health 36(4):693–712

    Google Scholar 

  184. Lin CY, Abdullah MH, Praveena SM, Yahaya AHB, Musta B (2012) Delineation of temporal variability and governing factors influencing the spatial variability of shallow groundwater chemistry in a tropical sedimentary island. J Hydrol 432–433:26–42

    Google Scholar 

  185. Lo CP, Yeung AKW (2003) Concepts and techniques of geographic information systems. Prentice-Hall of India Pvt. Ltd., New Delhi, p 492

    Google Scholar 

  186. Loftis JC (1996) Trends in groundwater quality. Hydrol Process 10:335–355

    Google Scholar 

  187. Lopez B, Baran N, Bourgine B (2015) An innovative procedure to assess multi-scale temporal trends in groundwater quality: example of the nitrate in the Seine-Normandy basin, France. J Hydrol 522:1–10

    Google Scholar 

  188. Lu L, Kashiwaya K, Koike K (2016) Geostatistics-based regional characterization of groundwater chemistry in a sedimentary rock area with faulted setting. Environ Earth Sci 75:829. https://doi.org/10.1007/s12665-016-5619-0

    Article  Google Scholar 

  189. Lumb A, Sharma TC, Bibeault J-F (2011) A review of genesis and evolution of water quality index (WQI) and some future directions. Water Qual Exposure Health 3:1–14

    Google Scholar 

  190. Machiwal D, Jha MK (2006) Time series analysis of hydrologic data for water resources planning and management: a review. J Hydrol Hydromech 54(3):237–257

    Google Scholar 

  191. Machiwal D, Jha MK (2010) Tools and techniques for water quality interpretation. In: Krantzberg G, Tanik A, Antunes do Carmo JS, Indarto A, Ekdal A (eds) Advances in water quality control. Scientific Research Publishing, Inc., USA, pp 211–252

    Google Scholar 

  192. Machiwal D, Jha MK (2012) Hydrologic time series analysis: theory and practice. Springer, the Netherlands and Capital Publishing Company, New Delhi, p 303

    Google Scholar 

  193. Machiwal D, Jha MK (2014) Role of geographical information system for water quality evaluation. In: Nielson D (ed) Geographic information systems (GIS): techniques, applications and technologies. Nova Science Publishers, New York, USA, pp 217–278

    Google Scholar 

  194. Machiwal D, Jha MK (2015) Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. J Hydrol Reg Stud 4(A):80–110

    Google Scholar 

  195. Machiwal D, Jha MK, Mal BC (2011) GIS-based assessment and characterization of groundwater quality in a hard-rock hilly terrain of Western India. Environ Monit Assess 174:645–663

    Google Scholar 

  196. Machiwal D, Jha MK, Singh VP, Mohan C (2018) Assessment and mapping of groundwater vulnerability to pollution: current status and challenges. Earth Sci Rev 185:901–927. https://doi.org/10.1016/j.earscirev.2018.08.009

    Article  Google Scholar 

  197. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Le Cam L.M, Neyman J (eds). In: Proceedings of the Fifth Berkeley symposium on mathematical statistics and probability, vol 1, University of California Press, Berkeley, California, pp 281–297

  198. Magesh NS, Chandrasekar N, Elango L (2016) Occurrence and distribution of fluoride in the groundwater of the Tamiraparani River basin, South India: a geostatistical modeling approach. Environ Earth Sci 75:1483. https://doi.org/10.1007/s12665-016-6293-y

    Article  Google Scholar 

  199. Mair A, El-Kadi AI (2013) Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA. J Contam Hydrol 153:1–23

    Google Scholar 

  200. Malapati A, Bronson KF, Booker JD, Hudnall WH, Schubert AM (2011) Soil profile sulfate in irrigated Southern High Plains cotton fields and Ogallala aquifer. J Soil Water Conserv 66(5):287–294

    Google Scholar 

  201. Margat J (1968) Groundwater vulnerability maps. Conception-estimation-mapping. EEC Institut Europeen de l’ Eau, Paris (in French)

    Google Scholar 

  202. Marko K, Al-Amri NS, Elfeki AMM (2014) Geostatistical analysis using GIS for mapping groundwater quality: case study in the recharge area of Wadi Usfan, western Saudi Arabia. Arab J Geosci 7(12):5239–5252

    Google Scholar 

  203. Masoud AA, Koike K, Mashaly HA, Gergis F (2016) Spatio-temporal trends and change factors of groundwater quality in an arid area with peat rich aquifers: Emergence of water environmental problems in Tanta District, Egypt. J Arid Environ 124:360–376

    Google Scholar 

  204. Masoud AA, El-Horiny MM, Atwia MG, Gemail KS, Koike K (2018) Assessment of groundwater and soil quality degradation using multivariate and geostatistical analyses, Dakhla Oasis, Egypt. J Afr Earth Sci 142:64–81

    Google Scholar 

  205. Matheron G (1965) Lee Variables Regionalisées et leur Estimation. Masson, Paris, p 306

    Google Scholar 

  206. Matheron G (1973) The intrinsic random functions and their applications. Adv Appl Prob 5:439–468

    Google Scholar 

  207. McBride GB (2005) Using statistical methods for water quality management: issues, problems and solutions. Wiley, New York

    Google Scholar 

  208. McCuen RH (2003) Modeling hydrologic change: statistical methods. Lewis Publishers, CRC Press LLC, Florida

    Google Scholar 

  209. Melloul A, Collin M (1992) The ‘principal components’ statistical method as a complementary approach to geochemical methods in water quality factor identification; Application to the Coastal Plain aquifer of Israel. J Hydrol 140:49–73

    Google Scholar 

  210. Melloul AJ, Collin M (1998) A proposed index for aquifer water quality assessment: the case of Israel’s Sharon region. J Environ Manag 54:131–142

    Google Scholar 

  211. Mendizabal I, Baggelaar PK, Stuyfzand PJ (2012) Hydrochemical trends for public supply well fields in The Netherlands (1898–2008), natural backgrounds and upscaling to groundwater bodies. J Hydrol 450–451:279–292

    Google Scholar 

  212. Mendoza GA, Martins H (2006) Multi-criteria decision analysis in natural resource management: a critical review of methods and new modelling paradigms. For Ecol Manag 230:1–22

    Google Scholar 

  213. Meng SX, Maynard JB (2001) Use of statistical analysis to formulate conceptual models of geochemical behavior: Water chemical data from the Botucatu aquifer in São Paulo state, Brazil. J Hydrol 250:78–97

    Google Scholar 

  214. Michalak AM, Kitanidis PK (2004) Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling. Water Resour Res 40:W08302. https://doi.org/10.1029/2004WR003214

    Article  Google Scholar 

  215. Mirzaei R, Sakizadeh M (2016) Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran. Environ Sci Pollut Res 23(3):2758–2769

    Google Scholar 

  216. Mohammadi K, Niknam R, Majd VJ (2009) Aquifer vulnerability assessment using GIS and fuzzy system: a case study in Tehran-Karaj aquifer. Iran Environ Geol 58:437–446

    Google Scholar 

  217. Molina M, Aburto FN, Calderan RL, Cazanga M, Escudey M (2009) Trace element composition of selected fertilizers used in Chile: phosphorus fertilizers as a source of long-term soil contamination. Soil Sediment Contam 18:497–511

    Google Scholar 

  218. Moore JS (1988) SEEPPAGE: a system for early evaluation of pollution potential of agricultural ground water environments. Geology Technical Note 5 (Revision 1), US Department of Agriculture, Soil Conservation Service, Washington, DC

  219. Mouser PJ, Hession WC, Rizzo DM, Gotelli NJ (2005) Hydrology and geostatistics of a Vermont, USA Kettlehole Peatland. J Hydrol 301:250–266

    Google Scholar 

  220. Myers DE, Begovich CL, Butz TR, Kane VE (1982) Variogram models for regional groundwater geochemical data. Math Geol 14(6):629–644

    Google Scholar 

  221. Nadiri AA, Sedghi Z, Khatibi R, Gharekhani M (2017) Mapping vulnerability of multiple aquifers using multiple models and fuzzy logic to objectively derive model structures. Sci Total Environ 593–594:75–90

    Google Scholar 

  222. Narany TS, Ramli MF, Aris AZ, Sulaiman WNA, Fakharian K (2014) Spatiotemporal variation of groundwater quality using integrated multivariate statistical and geostatistical approaches in Amol-Babol Plain, Iran. Environ Monit Assess 186:5797–5815

    Google Scholar 

  223. Nas B, Berktay A (2010) Groundwater quality mapping in urban groundwater using GIS. Environ Monit Assess 160:215–227

    Google Scholar 

  224. Nasiri F, Maqsood I, Huang G, Fuller N (2007) Water quality index: A fuzzy river-pollution decision support expert system. J Water Resour Plan Manag ASCE 133(2):95–105

    Google Scholar 

  225. National Research Council (1993) Groundwater vulnerability assessment, contaminant potential under conditions of uncertainty. National Academy Press, Washington DC

    Google Scholar 

  226. Nematollahi MJ, Ebrahimi P, Razmara M, Ghasemi A (2016) Hydrogeochemical investigations and groundwater quality assessment of Torbat-Zaveh plain, Khorasan Razavi, Iran. Environ Monit Assess 188:2. https://doi.org/10.1007/s10661-015-4968-6

    Article  Google Scholar 

  227. Niu B, Loáiciga HA, Wang Z, Zhan FB, Hong S (2014) Twenty years of global groundwater research: a science citation index expanded-based bibliometric survey (1993–2012). J Hydrol 519:966–975

    Google Scholar 

  228. Nobre RCM, Rotunno Filho OC, Mansur WJ, Nobre MMM, Cosenza CAN (2007) Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. J Contam Hydrol 94:277–292

    Google Scholar 

  229. Noshadi M, Ghafourian A (2016) Groundwater quality analysis using multivariate statistical techniques (case study: Fars province, Iran). Environ Monit Assess 188:419. https://doi.org/10.1007/s10661-016-5412-2

    Article  Google Scholar 

  230. Nriagu JO, Nieboer E (1988) Chromium in the natural and human environments. Wiley-Interscience, New York

    Google Scholar 

  231. Nshagali BG, Nouck PN, Meli’i JL, Arétouyap Z, Manguelle-Dicoum E (2015) High iron concentration and pH change detected using statistics and geostatistics in crystalline basement equatorial region. Environ Earth Sci 73(11):7135–7145

    Google Scholar 

  232. Ochsenkühn M, Kontoyannakos J, Ochsenkühn-Petropulu M (1997) A new approach to a hydrochemical study of groundwater flow. J Hydrol 194:64–75

    Google Scholar 

  233. Oleson SG, Carr JR (1990) Correspondence analysis of water quality data: Implications for fauna deaths at Stillwater Lakes, Neveda. Math Geol 22:665–698

    Google Scholar 

  234. Otto M (1998) Multivariate methods. In: Kellner R, Mermet JM, Otto M, Widmer HM (eds) Analytical chemistry. Wiley-VCH, Weinheim, p 916

    Google Scholar 

  235. Pacheco FAL (1998) Finding the number of natural clusters in groundwater data sets using the concept of equivalence class. Comput Geosci 24(1):7–15

    Google Scholar 

  236. Pacheco FAL, Pires LMGR, Santos RMB, Sanches Fernandes LF (2015) Factor weighting in DRASTIC modeling. Sci Total Environ 505:474–486

    Google Scholar 

  237. Panagopoulos G, Antonakos A, Lambrakis N (2006) Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol J 14:894–911

    Google Scholar 

  238. Paradis D, Vigneault H, Lefebvre R, Savard MM, Ballard J-M, Qian B (2016) Groundwater nitrate concentration evolution under climate change and agricultural adaptation scenarios: Prince Edward Island, Canada. Earth Syst Dyn 7(1):183–202

    Google Scholar 

  239. Park S-C, Yun S-T, Chae G-T, Yoo I-S, Shin K-S, Heo C-H, Lee S-K (2005) Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. J Hydrol 313:182–194

    Google Scholar 

  240. Parkhurst DL, Thorstenson DC, Plummer LN (1980) PHREEQE: a computer program for geochemical calculations. Water resources investigations report 80–96, United States Geological Survey, NTIS Technical Report, PB81-167801, Springfield, Virginia 22161, p 210

  241. Parkhurst DL, Plummer LN, Thorstenson DC (1982) BALANCE: a computer program for calculating mass transfer for geochemical reactions in ground water. Water resources investigations Report 82–14, United States Geological Survey, NTIS Technical Report, PB82-255902, Springfield, Virginia 22161, p 27

  242. Passarella G, Vurro M, D’Agostino V, Giuliano G, Barcelona MJ (2002) A probabilistic methodology to assess the risk of groundwater quality degradation. Environ Monit Assess 79:57–74

    Google Scholar 

  243. Pebesma EJ, de Kwaadsteniet JW (1997) Mapping groundwater quality in the Netherlands. J Hydrol 200:364–386

    Google Scholar 

  244. Pételet-Giraud E, Dörfliger N, Crochet P (2000) RISKE: method d’évaluation multicritère de la vulnérabilité des aquifers karstiques. Application aux systèmes des Fontanilles et Cent-Fonts (Hérault, Sud de la France) [Risk: methodology for multicriteria evaluation of the vulnerability of karst aquifers. Application to systems Fontanilles and Cent-Fonts Fontanilles (Herault, southern France]. Hydrogéologie 4:71–88

    Google Scholar 

  245. Petrişor A-I, Ianoş I, Iurea D, Văidianu MN (2012) Applications of principal component analysis integrated with GIS. Proc Environ Sci 14:247–256

    Google Scholar 

  246. Pettyjohn WA, Savoca M, Self D (1991) Regional assessment of aquifer vulnerability and sensitivity in the conterminous United States. Report EPA-600/2–91/043, United States Environmental Protection Agency, Ada, Oklahoma

  247. Piper AM (1944) A graphical procedure in the geochemical interpretation of water analysis. Am Geophysi Union Trans 25:914–928

    Google Scholar 

  248. Pique A, Grandia F, Canals A (2010) Processes releasing arsenic to groundwater in the Caldes de Malavella geothermal area, NE Spain. Water Res 44:5618–5630

    Google Scholar 

  249. Pirkle FL, Howell JA, Wecksung GW, Duran BS, Stablein NK (1984) An example of cluster analysis applied to a large geologic data set: aerial radiometric data from Copper Mountain, Wyoming. Math Geol 16(5):479–498

    Google Scholar 

  250. Plummer LN, Prestemon EC, Parkhurst DL (1991) An Interactive Code (NETPATH) for Modeling Net Geochemical Reactions along a Flow Path. Water-Resources Investigations Report 94-4078, United States Geological Survey, Reston, Virginia 22092, p 227

  251. Postma D, Larsen F, Thai NT, Pham TKT, Jakobsen R, Nhan PQ, Long TV, Viet PH, Murray AS (2012) Groundwater arsenic concentrations in Vietnam controlled by sediment age. Nat Geosci 5(9):656–661

    Google Scholar 

  252. Prati L, Pavanello R, Pesarin F (1971) Assessment of surface water quality by a single index of pollution. Water Res 5:741–751

    Google Scholar 

  253. Rainwater FH, Thatcher LL (1960) Methods for Collection and Analysis of Water Samples. 1st edition, United States Geological Survey Water-Supply Paper 1454, Washington, DC

  254. Ramakrishnaiah CR, Sadashivaiah C, Ranganna G (2009) Assessment of water quality index for the groundwater in Tumkur taluk, Karnataka state, India. E J Chem 6(2):523–530

    Google Scholar 

  255. Ramesh S, Sumukaran N, Murugesan AG, Rajan MP (2010) An innovative approach of drinking water quality index—a case study from southern Tamil Nadu, India. Ecol Ind 10:857–868

    Google Scholar 

  256. Ramos Leal JA, Barrón Romero LE, Sandoval Montes I (2004) Combined use of aquifer contamination risk maps and contamination indexes in the design of water quality monitoring networks in Mexico. Geofísica Internacional 43(4):641–650

    Google Scholar 

  257. Rao SN, Rao SP, Varma D (2013) Spatial variations of groundwater vulnerability using cluster analysis. J Geol Soc India 81:685–697

    Google Scholar 

  258. Rautman CA, Istok JD (1996) Probabilistic assessment of ground-water contamination: 1. Geostatistical framework. Ground Water 34(5):899–909

    Google Scholar 

  259. Reghunath R, Murthy TRS, Raghavan BR (2002) The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India. Water Res 36:2437–2442

    Google Scholar 

  260. Ribeiro L, Macedo ME (1995) Application of multivariate statistics, trend- and cluster analysis to groundwater quality in the Tejo and Sado aquifer. In: Proceedings of the Prague conference on groundwater quality: remediation and protection. IAHS Publication No. 225, Prague, pp 39–47

  261. Riley JA, Steinhorst RK, Winter GV, Williams RE (1990) Statistical analysis of the hydrochemistry of ground waters in Columbia River basalts. J Hydrol 119:245–262

    Google Scholar 

  262. Rouhani S, Hall TJ (1988) Geostatistical schemes for groundwater sampling. J Hydrol 103:85–102

    Google Scholar 

  263. Rupert MG (2001) Calibration of the DRASTIC ground water vulnerability mapping method. Ground Water 39(4):625–630

    Google Scholar 

  264. Sacha L, Fleming D, Wysocki H (1987) Survey of pesticides in selected areas having vulnerable ground waters in Washington State. EPA/910/9–87/169, United States Environmental Protection Agency, Region X, Seattle, Washington

  265. Sadat-Noori SM, Ebrahimi K, Liaghat AM (2014) Groundwater quality assessment using the water quality index and GIS in Saveh-Nobaran aquifer, Iran. Environ Earth Sci 71:3827–3843

    Google Scholar 

  266. Saeedi M, Abessi O, Sharifi F, Meraji H (2010) Development of groundwater quality index. Environ Monit Assess 163:327–335

    Google Scholar 

  267. Salas JD, Delleur JW, Yevjevich V, Lane WL (1980) Applied modeling of hydrologic time series. Water Resources Publications, Littleton

    Google Scholar 

  268. Saleh A, Al-Ruwaih F, Shehata M (1999) Hydrogeochemical processes operating within the main aquifers of Kuwait. J Arid Environ 42:195–209

    Google Scholar 

  269. Salman AS, Zaidi FK, Hussein MT (2015) Evaluation of groundwater quality in northern Saudi Arabia using multivariate analysis and stochastic statistics. Environ Earth Sci 74(12):7769–7782

    Google Scholar 

  270. Sânchez-Martos F, Jiménez-Espinosa R, Pulido-Bosch A (2001) Mapping groundwater quality variables using PCA and geostatistics: a case study of Bajo Andarax, southeastern Spain. Hydrol Sci J 46(2):227–242

    Google Scholar 

  271. Sara MN, Gibbons R (1991) Organization and analysis of water quality data. In: Nielsen DM (ed) Practical handbook of ground-water monitoring. Lewis Publishers, Michigan, pp 541–588

    Google Scholar 

  272. Scanlon BR, Reedy RC, Bronson KF (2008) Impacts of landuse change on nitrogen cycling archived in semiarid unsaturated zone nitrate profiles, Southern High Plains, Texas. Environ Sci Technol 42(20):7566–7572

    Google Scholar 

  273. Scanlon BR, Reedy RC, Gates JB (2010) Effects of irrigated agroecosystems: 1. Quantity of soil water and groundwater in the Southern High Plains, Texas. Water Resour Res. https://doi.org/10.1029/2009WR008427

    Article  Google Scholar 

  274. Schaefer JA, Mayor SJ (2007) Geostatistics reveal the scale of habitat selection. Ecol Model 209(2–4):401–406

    Google Scholar 

  275. Schoeller H (1955) Geochimie des eaux souterraines. Rev de l’Inst Francais du Petrole Paris 10(3):181–213

    Google Scholar 

  276. Sener E, Davraz A (2013) Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: The case of Egirdir Lake basin (Isparta, Turkey). Hydrogeol J 21:701–714

    Google Scholar 

  277. Şener Ş, Şener E, Davraz A (2017) Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci Total Environ 584–585:131–144

    Google Scholar 

  278. Sethy SN, Syed TH, Kumar A (2017) Evaluation of groundwater quality in parts of the Southern Gangetic Plain using water quality indices. Environ Earth Sci 76:116. https://doi.org/10.1007/s12665-017-6434-y

    Article  Google Scholar 

  279. Shahin M, Van Oorschot HJL, De Lange SJ (1993) Statistical analysis in water resources engineering. A.A. Balkema, Rotterdam

    Google Scholar 

  280. Shirazi SM, Imran HM, Akib S (2012) GIS-based DRASTIC method for groundwater vulnerability assessment: a review. J Risk Res 15(8):991–1011

    Google Scholar 

  281. Siebert S, Burke J, Faures J, Frenken K, Hoogeveen J, Döll P, Portmann T (2010) Groundwater use for irrigation—a global inventory. Hydrol Earth Syst Sci 14:1863–1880

    Google Scholar 

  282. Skidmore AK, Bijer W, Schmidt K, Kumar L, K (1997) Use of remote sensing and GIS for sustainable land management. ITC J 3(4):302–315

    Google Scholar 

  283. Smith DG (1990) A better water quality indexing system for rivers and streams. Water Res 24(10):1237–1244

    Google Scholar 

  284. Sneath PHA, Sokal RR (1973) Numerical taxonomy. W.H. Freeman and Co., San Francisco

    Google Scholar 

  285. Snodgrass MF, Kitanidis PK (1997) A geostatistical approach to contaminant source identification. Water Resour Res 33(4):537–546

    Google Scholar 

  286. Soltan ME (1999) Evaluation of groundwater quality in Dakhla Oasis (Egyptian Western Desert). Environ Monit Assess 57:157–168

    Google Scholar 

  287. Sorichetta A, Masetti M, Ballabio C, Sterlacchini S (2012) Aquifer nitrate vulnerability assessment using positive and negative weights of evidence methods, Milan Italy. Comput Geosci 48:199–210

    Google Scholar 

  288. Sprague LA, Lorenz DL (2009) Regional nutrient trends in streams and rivers of the United States, 1993–2003. Environ Sci Technol 43(10):3430–3435

    Google Scholar 

  289. Stafford DB (ed) (1991) Civil engineering applications of remote sensing and geographic information systems. ASCE, New York

    Google Scholar 

  290. Stamatis G, Parpodis K, Filintas A, Zagana E (2011) Groundwater quality, nitrate pollution and irrigation environmental management in the Neogene sediments of an agricultural region in central Thessaly (Greece). Environ Earth Sci 64:1081–1105

    Google Scholar 

  291. Stambuk-Giljanovic N (1999) Water quality evaluation by index in Dalmatia. Water Res 33(16):3423–3440

    Google Scholar 

  292. Steenhuis TS, Pacenka S, Porter KS (1987) MOUSE: a management model for evaluation ground water contamination from diffuse surface sources aided by computer graphics. Appl Agric Res 2:277–289

    Google Scholar 

  293. Steinhorst RK, Williams RE (1985) Discrimination of groundwater sources using cluster analysis, MANOVA, canonical analysis and discriminant analysis. Water Resour Res 21(8):1149–1156

    Google Scholar 

  294. Steube C, Richter S, Griebler C (2009) First attempts towards an integrative concept for the ecological assessment of groundwater ecosystems. Hydrogeol J 17(1):23–35

    Google Scholar 

  295. Stiff HA Jr. (1951) The interpretation of chemical water analysis by means of patterns. J Pet Technol 3(10):15–17

    Google Scholar 

  296. Stigter TY, Ribeiro L, Carvalho Dill AMM (2006) Application of a groundwater quality index as an assessment and communication tool in agroenvironmental policies: two Portuguese case studies. J Hydrol 327:578–591

    Google Scholar 

  297. Stoner JD (1978) Water-Quality Indices for Specific Water Uses. Geological Survey Circular 770, Washington, DC

  298. Stumpp C, Żurek A, Wachniew P, Gargini A, Gemitzi A, Filippini M, Witczak S (2016) A decision tree tool supporting the assessment of groundwater vulnerability. Environ Earth Sci 75:1057. https://doi.org/10.1007/s12665-016-5859-z

    Article  Google Scholar 

  299. Subbarao C, Subbarao NV, Chandu SN (1996) Characterization of groundwater contamination using factor analysis. Environ Geol 28(4):175–180

    Google Scholar 

  300. Suk H, Lee KK (1999) Characterization of a ground water hydrochemical system through multivariate analysis: clustering into ground water zones. Ground Water 37(3):358–366

    Google Scholar 

  301. Sullivan T, Gao Y (2017) Development of a new P3 (Probability, Protection, and Precipitation) method for vulnerability, hazard, and risk intensity index assessments in karst watersheds. J Hydrol 549:428–451

    Google Scholar 

  302. Sun AY (2007) A robust geostatistical approach to contaminant source identification. Water Resour Res 43:W02418. https://doi.org/10.1029/2006WR005106

    Article  Google Scholar 

  303. Sutadian AD, Muttil N, Yilmaz AG, Perera BJC (2016) Development of river water quality indices—a review. Environ Monit Assess 188:58. https://doi.org/10.1007/s10661-015-5050-0

    Article  Google Scholar 

  304. Taylor CH, Loftis JC (1989) Testing for trend in lake and ground water quality time series. J Am Water Resour Assoc 25(4):715–726

    Google Scholar 

  305. Tennant CB, White ML (1959) Study of the distribution of some geochemical data. Econ Geol 54:1281–1290

    Google Scholar 

  306. Teso RR, Younglove T, Peterson MR, Sheeks DL, Gallavan RE (1988) Soil taxonomy and surveys: classification of areal sensitivity to pesticide contamination of ground water. J Soil Water Conserv 43(4):348–352

    Google Scholar 

  307. Thirumalaivasan D, Karmegam M, Venugopal K (2003) AHP-DRASTIC: software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environ Model Softw 18(7):645–656

    Google Scholar 

  308. Thurstone LL (1931) Multiple factor analysis. Psychol Rev 38:406–427

    Google Scholar 

  309. Thyne G, Güler C, Poeter E (2004) Sequential analysis of hydrochemical data for watershed characterization. Ground Water 42(5):711–723

    Google Scholar 

  310. Tryon RC (1939) Cluster analysis. Edwards Brothers, Ann Arbor

    Google Scholar 

  311. United Nations Environment Programme (2007) Global drinking water quality index development and sensitivity analysis report. United Nations Environment Programme, Global Environment Monitoring System/Water Programme

  312. USEPA (1996) Guidance for data quality assessment: practical methods for data analysis. Quality Assurance Division, EPA QA/G-9, version QA96, United States Environmental Protection Agency (USEPA), Washington, DC

  313. USEPA (1998) Guidance for Data quality assessment: practical methods for data analysis. Quality Assurance Division, EPA QA/G-9, version QA97, United States Environmental Protection Agency (USEPA), Washington, DC

  314. USSL (1954) Diagnosis and improvement of saline and alkaline soils. United States Salinity Laboratory (USSL). In: Richards LA (ed) Hand Book 60. United States Department of Agriculture (USDA), Washington DC, USA, p 159

    Google Scholar 

  315. Usunoff EJ, Guzman-Guzman A (1989) Multivariate analysis in hydrochemistry: an example of the use of factor and correspondence analysis. Ground Water 27(1):27–34

    Google Scholar 

  316. Vadiati M, Asghari-Moghaddam A, Nakhaei M, Adamowski J, Akbarzadeh AH (2016) A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices. J Environ Manag 184:255–270

    Google Scholar 

  317. Van Stempvoort D, Evert L, Wassenaar L (1992) Aquifer Vulnerability Index: a GIS compatible method for groundwater vulnerability mapping. Can Water Resour J 18:25–37

    Google Scholar 

  318. Vasanthavigar M, Srinivasamoorthy K, Vijayaragavan K, Rajiv Ganthi R, Chidambaram S, Anandhan P, Manivannan R, Vasudevan S (2010) Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environ Monit Assess 171(1–4):595–609

    Google Scholar 

  319. Venkatramanan S, Chung SY, Kim TH, Kim B-W, Selvam S (2016) Geostatistical techniques to evaluate groundwater contamination and its sources in Miryang City. Korea Environ Earth Sci 75:994. https://doi.org/10.1007/s12665-016-5813-0

    Article  Google Scholar 

  320. Visser A, Dubus I, Broers HP, Brouyère S, Korcz M, Orban P, Goderniaux P, Batlle-Aguilar J, Surdyk N, Amraoui N, Job H, Pinault JL, Bierkens M (2009) Comparison of methods for the detection and extrapolation of trends in groundwater quality. J Environ Monit 11:2030–2043

    Google Scholar 

  321. von der Heide C, Böttcher J, Deurer M, Weymann D, Well R, Duijnisveld WHM (2008) Spatial variability of N2O concentrations and of denitrification-related factors in the surficial groundwater of a catchment in Northern Germany. J Hydrol 360:230–241

    Google Scholar 

  322. Voudouris K, Polemio M, Kazakis N, Sifaleras A (2010) An agricultural decision support system for optimal land use regarding groundwater vulnerability. Int J Inf Syst Soc Change 1(4):66–79

    Google Scholar 

  323. Vrba J, Zaporozec A (1994) Guidebook on mapping groundwater vulnerability. International contributions to hydrogeology, vol 16. International Association of Hydrogeologists, Hannover

    Google Scholar 

  324. Wachniew P, Zurek AJ, Stumpp C, Gemitzi A, Gargini A, Filippini M, Rozanski K, Meeks J, Kværner J, Witczak S (2016) Toward operational methods for the assessment of intrinsic groundwater vulnerability: a review. Crit Rev Environ Sci Technol 46(9):827–884

    Google Scholar 

  325. Wagenet RJ, Hutson JL (1987) LEACHM: a finite-difference model for simulating water, salt, and pesticide movement in the Plant root zone, continuum 2. New York State Resources Institute, Cornell University, Ithaca

    Google Scholar 

  326. WHO (2017) Guidelines for drinking-water quality: fourth edition incorporating the first addendum. World Health Organization, Geneva (license: CC BY-NC-SA 3.0 IGO)

    Google Scholar 

  327. Wilcox LV (1955) Classification and use of irrigation water. Circular 696. United States Department of Agriculture (USDA), Washington, DC

  328. Williams RE (1982) Statistical identification of hydraulic connections between the surface of a mountain and internal mineralized sources. Ground Water 20(4):466–478

    Google Scholar 

  329. World Bank (2010) Deep wells and prudence: towards pragmatic action for addressing groundwater overexploitation in India. World Bank Report No. 51676, Washington, DC

  330. Wunderlin DA, del Pilar DM, Valeria AM, Fabiana PS, Cecilia HA, de los Angeles BM (2001) Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquía River Basin (Córdoba-Argentina). Water Res 35(12):2881–2894

    Google Scholar 

  331. Wurl J, Mendez-Rodriguez L, Acosta-Vargas B (2014) Arsenic content in groundwater from the southern part of the San Antonio-El Triunfo mining district, Baja California Sur, Mexico. J Hydrol 518:447–459

    Google Scholar 

  332. WWAP (World Water Assessment Programme) (2009) United Nations World Water Development Report 3, water in a changing world, United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, 2009. http://unesdoc.unesco.org/images/0021/002156/215644e.pdf. Accessed 9 May 2017

  333. WWAP (World Water Assessment Programme) (2012) United Nations World Water Development Report 4, Managing Water Under Uncertainty and Risk, United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, 2012. http://unesdoc.unesco.org/images/0021/002156/215644e.pdf. Accessed 9 May 2017

  334. Yazdanpanah N (2016) Spatiotemporal mapping of groundwater quality for irrigation using geostatistical analysis combined with a linear regression method. Model Earth Syst Environ 2:18. https://doi.org/10.1007/s40808-015-0071-9

    Article  Google Scholar 

  335. Yevjevich VM (1972) Stochastic processes in hydrology. Water Resources Publications, Fort Collins

    Google Scholar 

  336. Yu WH, Harvey CM, Harvey CF (2003) Arsenic in groundwater in Bangladesh: a geostatistical and epidemiological framework for evaluating health effects and potential remedies. Water Resour Res 39(6):1146. https://doi.org/10.1029/2002WR001327

    Article  Google Scholar 

  337. Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16:1807–1829

    Google Scholar 

  338. Zakhem BA, Hafez R (2015) Heavy metal pollution index for groundwater quality assessment in Damascus Oasis, Syria. Environ Earth Sci 73(10):6591–6600

    Google Scholar 

  339. Zaporozec A (1972) Graphical interpretation of water-quality data. Ground Water 10(2):32–43

    Google Scholar 

  340. Zwahlen F (ed) (2004) Vulnerability and risk mapping for the protection of carbonate (Karst) aquifers, final report (COST Action 620). European Commission, Directorate-General XII science, research and development, Report EUR 20912, Brussels, p 297

Download references

Acknowledgements

The authors are grateful to Dr. Olaf Kolditz (Editor-in-Chief) and two anonymous reviewers for their useful suggestions and comments, which helped improve earlier version of this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deepesh Machiwal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Machiwal, D., Cloutier, V., Güler, C. et al. A review of GIS-integrated statistical techniques for groundwater quality evaluation and protection. Environ Earth Sci 77, 681 (2018). https://doi.org/10.1007/s12665-018-7872-x

Download citation

Keywords

  • Artificial intelligence methods
  • Geostatistical modeling
  • GIS
  • Hydrogeochemistry
  • Multivariate analysis
  • Time series modeling
  • Water quality index