Skip to main content

Advertisement

Log in

Evaluating the applicability of European karst vulnerability assessment methods to the Yucatan karst, Mexico

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The development of vulnerability maps is considered to be the first step in promoting awareness, development of protection strategies and sustainable use of karst aquifers. Nevertheless, high subjectivity of current methodologies for groundwater vulnerability assessment leads to contradictory results when different models are applied over the same area. This makes it difficult for water institutions and decision makers to determine a method to be used on a specific karst area. Four European methods (EPIK, PI, COP and PaPRIKa) were applied for the Yucatan karst to estimate groundwater vulnerability and determine if any of these European methods display vulnerability outcomes in correspondence with regional characteristics such as sinkhole alignments and the shallow water table. Agreement between methodologies was evaluated according to the spatial match on vulnerability rates displayed by final maps; intrinsic features influencing such match and divergent factors were highlighted. Similar vulnerabilities, with more than 52% in average of spatial agreement, were found between COP, PI and EPIK maps. A considerable average up to 33% of match in moderate vulnerability between these three methods was analysed. However, despite the methods displaying similarities regarding moderate vulnerability, these methodologies show no congruence with regional characteristics. A result of a moderate vulnerability on Yucatan coastal and central areas, where the unsaturated zone reaches just a couple of metres, is not an accurate outcome for the shallow water table. Adaptations of these methods or a new integrated methodology would be necessary to estimate groundwater vulnerability in the Yucatan karst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(modified from Marín et al. 2000)

Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar Y, Bautista F, Mendoza ME et al (2016) Density of karst depressions in Yucatan State, Mexico. J Cave Karst Stud 78:51

    Google Scholar 

  • Aller L, Lehr JH, Petty R, Bennett T (1987) DRASTIC: a standardized system to evaluate groundwater pollution potential using hydrogeologic settings. National Water Well Association, Worthington

    Google Scholar 

  • Andreo B, Goldscheider N, Vadillo I et al (2006) Karst groundwater protection: First application of a Pan-European approach to vulnerability, hazard and risk mapping in the Sierra de Líbar (Southern Spain). Sci Total Environ 357:54–73

    Article  Google Scholar 

  • Bauer-Gottwein P, Gondwe BR, Charvet G et al (2011) Review: the Yucatán Peninsula karst aquifer, México. Hydrogeol J 19:507–524

    Article  Google Scholar 

  • Civita M, De Maio M, Berberi F (1997) Sintacs: un sistema parametrico per la valutazione e la cartografia della vulnerabilità degli acquiferi all’inquinamento: metodologia e automatizzazione. Pitagora Ed, Bologna

    Google Scholar 

  • CONABIO (1999) Mapa de uso de suelo y vegetación modificado por CONABIO. Obtenidos a través de la plataforma CONABIO. http://www.conabio.gob.mx. Accessed 28 Mar 2016

  • COST 65 (1995) Hydrogeological aspects of groundwater protection in karstic areas, Final report (COST action 65). European Commission, Directorate-General XII Science, Research and Development, Report EUR 16547 EN. Brüssel, Luxemburg, p 446

  • De Sherbinin A (2014) Mapping the unmeasurable? Spatial analysis of vulnerability t climate change and climate variability. Dissertation, University of Twente

  • Doehring DO, Butler JH (1974) Hydrogeologic constraints on Yucatán’s development. Science 186:591–595. https://doi.org/10.1126/science.186.4164.591

    Article  Google Scholar 

  • Döerfliger N, Jeannin P, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39:165–176

    Article  Google Scholar 

  • Dörfliger N, Plagnes V, Kavouri K et al (2009) PaPRIKa, une méthode multicritère de cartographie de la vulnérabilité pour une gestion des ressources et des captages en milieu karstique: exemples d’application dans le Sud-Ouest de la France [PaPRIKa, a multicriteria method of mapping the vulnerability as a tool for resource and capture works management in karst: examples of application in the southwest of France]. Géologues 163:86–92

    Google Scholar 

  • Dörfliger N, Plagnes V, Kavouri K (2010) PaPRIKa, the French multicriteria method for mapping the intrinsic vulnerability of karst water resource and source—two examples (Pyrenees, Normandy). In: Andreo B, Carrasco F, Durán J, LaMoreaux J (eds) Advances in research in karst media. Environmental Earth Sciences. Springer, Berlin, pp 49–56

    Google Scholar 

  • Duch J (1988) La conformación territorial del estado de Yucatán: los componentes del medio físico. Universidad Autonoma de Chapingo, Centro Regional de la Peninsula de Yucatán, México

    Google Scholar 

  • Escolero O, Marín LE, Steinich B et al (2002) Development of a protection strategy of karst limestone aquifers: the Merida Yucatan, Mexico case study. Water Resour Manag 16:351–367. https://doi.org/10.1023/A:1021967909293

    Article  Google Scholar 

  • Ford D, Williams PD (1989) Karst hydrogeology and geomorphology. Unwin Hyman, Boston

    Book  Google Scholar 

  • Foster S (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: Van Duijevenboden W, Van Waegeningh HG (eds) Vulnerability of soil and groundwater to pollutants. The Hague, pp 69–86

  • Foster S, Hirata R (1988) Groundwater risk assessment: a methodology using available data. CEPIS Technical report, Lima

  • Gogu RC, Dassargues A (2000) Sensitivity analysis for the EPIK method of vulnerability assessment in a small karstic aquifer, southern Belgium. Hydrogeol J 8:337–345. https://doi.org/10.1007/s100400050019

    Article  Google Scholar 

  • Gogu RC, Hallet V, Dassargues A (2003) Comparison of aquifer vulnerability assessment techniques. Application to the Néblon river basin (Belgium). Environ Geol 44:881–892

    Article  Google Scholar 

  • Goldscheider N, Klute M, Sturm S, Hötzl H (2000) The PI method—a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Z Angew Geol 46:157–166

    Google Scholar 

  • Gondwe BR, Lerer S, Stisen S et al (2010) Hydrogeology of the south-eastern Yucatan Peninsula: new insights from water level measurements, geochemistry, geophysics and remote sensing. J Hydrol 389:1–17. https://doi.org/10.1016/j.jhydrol.2010.04.044

    Article  Google Scholar 

  • González-Herrera R, Sánchez-y-Pinto I, Gamboa-Vargas J (2002) Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico. Hydrogeol J 10:539–552

    Article  Google Scholar 

  • Graniel C, Morris L, Carrillo-Rivera J (1999) Effects of urbanization on groundwater resources of Merida, Yucatan, Mexico. Environ Geol 37:303–312. https://doi.org/10.1007/s002540050388

    Article  Google Scholar 

  • Hölting B, Haertlé T, Hohberger K-H et al (1995) Konzept zur Ermittlung der Schutzfunktion der Grundwasserüberdeckung [Concept for the evaluation of the protective function of the layers overlying groundwater]. Geol Jb C63:5–24

    Google Scholar 

  • Hötzl H (1996) Grundwasserschutz in Karstgebieten. Grundwasser 1:5–11

    Article  Google Scholar 

  • INEGI (2002) Estudio Hidrológico del Estado de Yucatán. Instituto Nacional de Geografía, Estadística e Informática, México, p 92

    Google Scholar 

  • INEGI (2015) Resultados definitivos de la encuesta intercensal 2015 [Press boletin]. Instituto Nacional de Estadistica y Geografia, Mérida

    Google Scholar 

  • Jeannin P-Y, Cornaton F, Zwahlen F, Perrochet P (2001) VULK: a tool for intrinsic vulnerability assessment and validation. In: 7th conference on limestone hydrology and fissured media. Sci. Tech. Envir, Besnacon, pp 185–190

  • Kavouri K, Plagnes V, Tremoulet J et al (2011) PaPRIKa: a method for estimating karst resource and source vulnerability—application to the Ouysse karst system (southwest France). Hydrogeol J 19:339–353

    Article  Google Scholar 

  • Lesser J (1976) Estudio hidrogeológico e hidrogeoquímico de la Peninsula de Yucatán [Hydrogeological and hydrochemical study of the Yucatan Peninsula]. Proyecto Conacyt-NSF 704. Secretaria de Recursos Hidraulicos, Direccion de Geohidrologia y Zonas Aridas, México City

    Google Scholar 

  • Lesser I, Weidie A (1988) Region 25, Yucatán Peninsula. In: Back W, Rosenshein JS, Seaber PR (eds) Hydrogeology: the geology of North America. Geological Society of America, Boulder, pp 237–242

    Chapter  Google Scholar 

  • Lopez-Ramos E (1975) Geological summary of the Yucatán Peninsula. In: Nairn AEM, Stehli FG (eds) The ocean basins and margins, vol 3. The Gulf of Mexico and the Caribbean. Plenum, New York

    Google Scholar 

  • Malík P, Svasta J (1999) REKS—an alternative method of karst groundwater vulnerability estimation. Hydrogeology and land use management. In: Proceedings of the XXIX congress of the International Association of Hydrogeologist, Bratislava, pp 79–85

  • Marin LE (1990) Field investigations and numerical simulation of groundwater flow in the karstic aquifer of northwestern Yucatan, Mexico

  • Marín LE (1990) Field investigations and numerical simulation of groundwater flow in the karstic aquifer of northwestern Yucatán, México. Dissertation, Northern Illinois University

  • Marín L, Steinich B, Pacheco J, Escolero O (2000) Hydrogeology of a contaminated sole-source karst aquifer, Mérida, Yucatán, Mexico. Geofísica Internacional 39:359–365

    Google Scholar 

  • Marín A, Dörfliger N, Andreo B (2012) Comparative application of two methods (COP and PaPRIKa) for groundwater vulnerability mapping in Mediterranean karst aquifers (France and Spain). Environ Earth Sci 65:2407–2421. https://doi.org/10.1007/s12665-011-1056-2

    Article  Google Scholar 

  • Mimi ZA, Mahmoud N, Madi MA (2012) Modified DRASTIC assessment for intrinsic vulnerability mapping of karst aquifers: a case study. Environ Earth Sci 66:447–456

    Article  Google Scholar 

  • Morris B, Lawrence A, Stuart M (1994) The impact of urbanization on groundwater quality (Project summary report). British Geological Survey (WC/94/056) (Unpublished), Nottingham

  • Pacheco J, Cabrera S (2013) Calidad del agua subterranea en el estado de Yucatán después del huracán Isidore (2002). Mérida, México

    Google Scholar 

  • Pérez R, Pacheco J (2000) Vulnerabilidad del agua subterránea a la contaminación de nitratos en el estado de Yucatán. Ingenieria 8:33–42

    Google Scholar 

  • Perry E, Marin L, McClain J, Velazquez G (1995) Ring of cenotes (sinkholes), northwest Yucatan, Mexico: its hydrogeologic characteristics and possible association with the Chicxulub impact crater. Geology 23:17–20

    Article  Google Scholar 

  • Perry E, Paytan A, Pedersen B, Velazquez-Oliman G (2009) Groundwater geochemistry of the Yucatan Peninsula, Mexico: constraints on stratigraphy and hydrogeology. J Hydrol 367:27–40

    Article  Google Scholar 

  • Pope KO, Ocampo AC, Duller CE (1993) Surficial geology of the Chicxulub impact crater, Yucatan, Mexico. Earth Moon Planets 63:93–104

    Article  Google Scholar 

  • Preston BL (2013) Local path dependence of U.S. socioeconomic exposure to climate extremes and the vulnerability commitment. Glob Environ Change 23:719–732

    Article  Google Scholar 

  • Ravbar N, Goldscheider N (2009) Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeol J 17:725–733. https://doi.org/10.1007/s10040-008-0368-0

    Article  Google Scholar 

  • Rebolledo-Vieyra M, Urrutia-Fucugauchi J, Marín LE et al (2000) UNAM scientific shallow-drilling program of the Chicxulub impact crater. Int Geol Rev 42:928–940

    Article  Google Scholar 

  • Sánchez OS, Islebe GA, Hernández MV (2007) Flora arbórea y caracterización de gremios ecológicos en distintos estados sucesionales de la selva mediana de Quintana Roo. Foresta Veracruzana 9:17–26

    Google Scholar 

  • Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70:1569–1578

    Article  Google Scholar 

  • Saxton K, Rawls W, Romberger J, Papendick R (1986) Estimating generalized soil-water characteristics from texture. Soil Sci Soc Am J 50:1031–1036. https://doi.org/10.2136/sssaj1986.03615995005000040039x

    Article  Google Scholar 

  • SEMARNAP (1998) Mapa de suelos dominantes de la República Mexicana. Obtenidos a través de la plataforma CONABIO. http://www.conabio.gob.mx/informacion/gis/?vns=gis_root/topog/infgrt/mbaprgw. Accessed 10 Jan 2016

  • SMN (2015) Datos climáticos diarios del CLICOM del SMN a través de su plataforma web del CICESE. http://clicom-mex.cicese.mx. Accessed 15 July 2015

  • Steinich B, Marín LE (1996) Hydrogeological investigations in northwestern Yucatan, Mexico, using resistivity surveys. Groundwater 34:640–646

    Article  Google Scholar 

  • Steinich B, Marín L (1997) Determination of flow characteristics in the aquifer of the Northwestern Peninsula of Yucatan, Mexico. J Hydrol 191:315–331. https://doi.org/10.1016/S0022-1694(96)03038-7

    Article  Google Scholar 

  • Stempvoort DV, Ewert L, Wassenaar L (1993) Aquifer vulnerability index: a GIS-compatible method for groundwater vulnerability mapping. Can Water Resour J 18:25–37

    Article  Google Scholar 

  • Vías J, Andreo B, Perles M, Carrasco F (2005) A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic conditions. Environ Geol 47:586–595

    Article  Google Scholar 

  • Vías J, Andreo B, Perles M et al (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeol J 14:912–925

    Article  Google Scholar 

  • Vinson G (1962) Upper Cretaceous and tertiary stratigraphy of Guatemala. AAPG Bulletin 46:425–456

    Google Scholar 

  • Vrba J, Zaporožec A (1994) Guidebook on mapping groundwater vulnerability. Heise, Hannover

    Google Scholar 

  • Weidie A (1985) Geology of Yucatan platform. In: Ward WC, Weidie AE, Back W (eds) Geology and hydrogeology of the Yucatan and Quaternary geology of northeastern Yucatan Peninsula. New Orleans Geological Society, New Orleans

    Google Scholar 

  • Zamora Crescencio P, García Gil G, Flores Guido JS, Ortiz JJ (2008) Estructura y composición florística de la selva mediana subcaducifolia en el sur del estado de Yucatán, México. Polibotánica 26:39–66

    Google Scholar 

  • Zwahlen F (ed) (2004) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report (COST action 620). European Commission, Directorate-General XII Science, Brussels

    Google Scholar 

Download references

Acknowledgements

To the Mexican National Council for Science and Technology (CONACYT) for the doctoral scholarship granted to Miguel Moreno Gómez (CVU: 466945) as part of its international program. To the German Federal Ministry of Education and Research (BMBF) within Junior Research Group INOWAS (project reference no. 01LN1311A). To the Graduate Academy (TU Dresden) for the research abroad support, granted to Miguel Moreno Gómez in March 2017. To the Yucatan Autonomous University (UADY), Department of Environmental Engineering and to the National Water commission (CONAGUA), Organismo de Cuenca Península de Yucatán.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Moreno-Gómez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-Gómez, M., Pacheco, J., Liedl, R. et al. Evaluating the applicability of European karst vulnerability assessment methods to the Yucatan karst, Mexico. Environ Earth Sci 77, 682 (2018). https://doi.org/10.1007/s12665-018-7869-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7869-5

Keywords

Navigation