Skip to main content
Log in

An interval matrix method used to optimize the decision matrix in AHP technique for land subsidence susceptibility mapping

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The analytical hierarchy process (AHP) is one of the most effective methods for criteria ranking/weighting to have been successfully incorporated into GIS analyses. We present a new method for optimizing pairwise comparison decision-making matrices in AHP method, which has been developed on the basis of an interval pairwise comparison matrix (IPCM) derived from expert knowledge. The method has been used for criteria ranking in land subsidence susceptibility mapping (LSSM) as a practical test case, for which an interval matrix was generated by pairwise comparison. To compare the capability of the AHP method (a traditional approach) with that of the proposed IPCM method (a novel approach), 11 creations of LSSM were ranked using each approach in turn. The criteria weightings obtained were then used to produce LSSM maps based on each of these approaches. The results were tested against a data set of known land subsidence occurrences, indicating an improvement in accuracy of about 14% in the LSSM map that was developed using the IPCM method. This improvement was achieved by minimizing the uncertainty associated with criteria ranking/weighting in a traditional AHP and could form a basis for future research into minimizing the uncertainty in weightings derived using the AHP method. Our results will be of considerable importance for researchers involved in GIS-based multi-criteria decision analysis (MCDA) and those dealing with GIS-based spatial decision-making methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmadi SH, Sedghamiz A (2007) Geostatistical analysis of spatial and temporal variations of groundwater level. Environ Monit Assess 129(1–3):277–294

    Article  Google Scholar 

  • Brunelli M (2014) Introduction to the analytic hierarchy process. Springer, Berlin

    Google Scholar 

  • Cabrera-Barona P, Ghorbanzadeh O (2018) Comparing classic and interval analytical hierarchy process methodologies for measuring area-level deprivation to analyze health inequalities. Int J Environ Res Public Health 15(1):140

    Article  Google Scholar 

  • Carmone FJ, Kara A, Zanakis SH (1997) A Monte Carlo investigation of incomplete pairwise comparison matrices in AHP. Eur J Oper Res 102:538–553

    Article  Google Scholar 

  • Carver SJ (1991) Integrating multi-criteria evaluation with geographical information systems. Int J Geogr Inf Syst 5:321–339

    Article  Google Scholar 

  • Chai JC, Shen SL, Zhu HH, Zhang XL (2004) Land subsidence due to groundwater drawdown in Shanghai. Geotech 54(2):143–147

    Article  Google Scholar 

  • Chen J, Zhu Q (2010) Uncertainty and decision strategy analysis of GIS-based ordered weighted averaging method. In: Information networking and automation (ICINA), int conference on 2010 Oct 18, vol 1. IEEE, pp V1–375

  • Chen Y, Khan S, Paydar Z (2010) To retire or expand? A fuzzy GIS-based spatial multi-criteria evaluation framework for irrigated agriculture. Irrig Drain 59:174–188

    Google Scholar 

  • Chen VY, Lien HP, Liu CH, Liou JJ, Tzeng GH, Yang LS (2011) Fuzzy MCDM approach for selecting the best environment-watershed plan. Appl Soft Comput 11:265–275

    Article  Google Scholar 

  • Dehghani M, Rastegarfar M, Ashrafi RA, Ghazipour N, Khorramrooz HR (2014) Interferometric SAR and geospatial techniques used for subsidence study in the Rafsanjan plain. Am J Environ Eng 4:32–40

    Google Scholar 

  • Deng H (1999) Multicriteria analysis with fuzzy pairwise comparison. Int J Approx Reason 21:215–231

    Article  Google Scholar 

  • Eastman JR, Toledano J, Jin W, Kyem PA (1993) Participatory multi-objective decision-making in GIS. In: Autocarto-conference. ASPRS American society for photogrammetry, pp 33–33

  • Fakhri MS, Moghaddam AA, Najib MO, Barzegar R (2015) Investigation of nitrate concentrations in groundwater resources of Marand plain and groundwater vulnerability assessment using AVI and gods methods. J Environ Stud 41(1):15

    Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27:861–874

    Article  Google Scholar 

  • Feizizadeh B, Blaschke T (2011) Landslide risk assessment based on GIS multi-criteria evaluation: a case study in Bostan-Abad County, Iran. J Earth Sci Eng 1:1

    Google Scholar 

  • Feizizadeh B, Blaschke T (2012) Uncertainty analysis of GIS-based ordered weighted averaging method for landslide susceptibility mapping in Urmia Lake Basin, Iran. In: Proceedings of GIScience

  • Feizizadeh B, Blaschke T (2013a) Land suitability analysis for Tabriz County, Iran: a multi-criteria evaluation approach using GIS. J Environ Plann Man 56:1–23

    Article  Google Scholar 

  • Feizizadeh B, Blaschke T (2013b) GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Nat Hazards 65:2105–2128

    Article  Google Scholar 

  • Feizizadeh B, Blaschke T (2014) An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility mapping. Int J Geogr Inf Sci 28:610–638

    Article  Google Scholar 

  • Feizizadeh B, Ghorbanzadeh O (2017) GIS-based interval pairwise comparison matrices as a novel approach for optimizing an analytical hierarchy process and multiple criteria weighting. GI_Forum 1: 27–35

    Article  Google Scholar 

  • Feizizadeh B, Kienberger S (2017) Spatially explicit sensitivity and uncertainty analysis for multicriteria-based vulnerability assessment. J Environ Plann Man 1:1–23

    Google Scholar 

  • Feizizadeh B, Roodposhti MS, Jankowski P, Blaschke T (2014a) A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Comput Geosci 73:208–221

    Article  Google Scholar 

  • Feizizadeh B, Jankowski P, Blaschke T (2014b) A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis. Comput Geosci 64:81–95

    Article  Google Scholar 

  • Feizizadeh B, Kienberger S, Kamran KV (2015) Sensitivity and uncertainty analysis approach for GIS-MCDA based economic vulnerability assessment. GI_Forum 2015:81–89

    Article  Google Scholar 

  • Feizizadeh B, Roodposhti MS, Blaschke T, Aryal J (2017) Comparing GIS-based support vector machine kernel functions for landslide susceptibility mapping. Arab J Geosci 10:122

    Article  Google Scholar 

  • Ganguli M (2011) Groundwater withdrawal and land subsidence: a study of Singur Block, West Bengal, India. Int J Geomat Geosci 2:465

    Google Scholar 

  • Gaspar JL, Goulart C, Queiroz G, Silveira D, Gomes A (2004) Dynamic structure and data sets of a GIS database for geological risk analysis in the Azores volcanic islands. Nat Hazards Earth Syst Sci 4:233–242

    Article  Google Scholar 

  • Ghorbanzadeh O, Feizizadeh B, Blaschke T (2017) Multi-criteria risk evaluation by integrating an analytical network process approach into GIS-based sensitivity and uncertainty analyses. Geomat Nat Hazards Risk 1:25

    Google Scholar 

  • Goodwin P, Wright G (2009) Decision analysis for management judgment. Wiley, New York

    Google Scholar 

  • Gorsevski PV, Gessler PE, Foltz RB, Elliot WJ (2006) Spatial prediction of landslide hazard using logistic regression and ROC analysis. Trans GIS 10:395–415

    Article  Google Scholar 

  • Gorsevski PV, Donevska KR, Mitrovski CD, Frizado JP (2012) Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: a case study using ordered weighted average. Waste Manag 32:287–296

    Article  Google Scholar 

  • Greene R, Devillers R, Luther JE, Eddy BG (2011) GIS-Based Multiple-Criteria Decision Analysis. Geography Compass 5:412–432

    Article  Google Scholar 

  • Hu RL, Yue ZQ, Wang LU, Wang SJ (2004) Review on current status and challenging issues of land subsidence in China. Eng Geol 76(1–2):65–77

    Article  Google Scholar 

  • Huang B (2017) Comprehensive geographic information systems. Elsevier, Amsterdam

    Google Scholar 

  • Iranian Census Centre (2016) Iranian cities population [online]. http://www.amar.org.ir

  • Ishizaka A, Balkenborg D, Kaplan T (2011) Does AHP help us make a choice? An experimental evaluation. J Oper Res Soc 62:1801–1812

    Article  Google Scholar 

  • Jadidi MR, Sabouhi Sabouni M, Homayounifar M, Mohammadi A (2012) Assessment of energy use pattern for tomato production in Iran: a case study from the Marand region. Res Agric Eng 58(2):50–56

    Article  Google Scholar 

  • Jahanshahloo G, Hoseinzadeh F, Barzegarinegad A, Hatamaian H (2012) Weight gain for interval pairwise matrices in the AHP with area of confidence by DEA method. In: Proceedings of the 4th national conference of data envelopment analysis, vol 1. University of Mazandaran, Sari, p 3

  • Kaleyski N (2014) Eigenvalues of symmetric interval matrices. BC. Thesis, Charles University, Prague, p 71

  • Kaliraj S, Chandrasekar N, Magesh NS (2014) Identification of potential groundwater recharge zones in Vaigai upper basin, Tamil Nadu, using GIS-based analytical hierarchical process (AHP) technique. Arab J Geosci 7(4):1385–1401

    Article  Google Scholar 

  • Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11(3):425–439

    Article  Google Scholar 

  • Khan S, Faisal MN (2008) An analytic network process model for municipal solid waste disposal options. Waste management 28:1500–1508

    Article  Google Scholar 

  • Khandan R (2011) Analysis acceptable consistency of interval comparison matrices and obtaining their weights. M.Sc. Thesis, University of Qom, Qom, p 67

  • Khorrami B (2016) Assessment of groundwater withdrawal applying GIS [M.Sc. thesis]. University of Tabriz, Tabriz, p 110

  • Kritikos TR, Davies TR (2011) GIS-based multi-criteria decision analysis for landslide susceptibility mapping at northern Evia, Greece [GIS-basierte multikriterielle Entscheidungsanalysen zur Kartierung von Massenverlagerungspotenzialen im nördlichen Evia, Griechenland.]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 162:421–434

    Article  Google Scholar 

  • Kułakowski K (2015) Notes on order preservation and consistency in AHP. Eur J Oper Res 245:333–337

    Article  Google Scholar 

  • Lai SK (1995) A preference-based interpretation of AHP. Omega 23:453–462

    Article  Google Scholar 

  • Lan J, Lin J, Cao L (2009) An information mining method for deriving weights from an interval comparison matrix. Math Comput Model 50:393–400

    Article  Google Scholar 

  • Lashkaripour GR, Asghari-Moghaddam A, Allaf-Najib M (2005) The effects of water table decline on the groundwater quality in Marand Plain, Northwest Iran. Iran Int J Sci 6(1):47–60

    Google Scholar 

  • Lee S, Park I, Choi JK (2012) Spatial prediction of ground subsidence susceptibility using an artificial neural network. J Environ Manag 49(2):347–358

    Article  Google Scholar 

  • Li X, Cheng G, Lu L (2000) Comparison of spatial interpolation methods. Adv Earth Sci 3:003

    Google Scholar 

  • Liu F (2009) Acceptable consistency analysis of interval reciprocal comparison matrices. Fuzzy Sets Syst 160:2686–2700

    Article  Google Scholar 

  • Malczewski J (1999) GIS and multicriteria decision analysis. Wiley, New York

    Google Scholar 

  • Malczewski J (2004) GIS-based land-use suitability analysis: a critical overview. Progr Plann 62(1):3–65

    Article  Google Scholar 

  • Malczewski J (2006) GIS-based multicriteria decision analysis: a survey of the literature. Int J Geogr Inf Sci 20:703–726

    Article  Google Scholar 

  • Malczewski J, Rinner C (2015) Multicriteria decision analysis in geographic information science. Springer, Berlin

    Book  Google Scholar 

  • Mendoza GA, Martins H (2006) Multi-criteria decision analysis in natural resource management: a critical review of methods and new modelling paradigms. For Ecol Manag 230(1–3):1–22

    Article  Google Scholar 

  • Mikhailov L (2003) Deriving priorities from fuzzy pairwise comparison judgements. Fuzzy Sets Syst 134:365–385</Bib>

    Article  Google Scholar 

  • Mikhailov L (2004) Group prioritization in the AHP by fuzzy preference programming method. Comput Oper Res 31:293–301

    Article  Google Scholar 

  • Motagh M, Walter TR, Sharifi MA, Fielding E, Schenk A, Anderssohn J, Zschau J (2008) Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophys Res Lett 35(16):1–5

    Article  Google Scholar 

  • Nandi A, Shakoor A (2010) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110:11–20

    Article  Google Scholar 

  • Nekhay O, Arriaza M, Guzmán-Álvarez JR (2009) Spatial analysis of the suitability of olive plantations for wildlife habitat restoration. Comput Electron Agric 65:49–64

    Article  Google Scholar 

  • Özcan T, Çelebi N, Esnaf Ş (2011) Comparative analysis of multi-criteria decision making methodologies and implementation of a warehouse location selection problem. Expert Syst Appl 38(8):9773–9779

    Article  Google Scholar 

  • Pirnazar M, Zand Karimi A, Feizizadeh B, Ostad-Ali-Askari K, Eslamian S, Hasheminasab H, Ghorbanzadeh O, Haeri Hamedani M (2017) Assessing flood hazard using GIS based multi-criteria decision making approach; study area: East Azerbaijan province (Kaleibar Chay basin). J Flood Eng 8(2):203–223

    Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63:965–996

    Article  Google Scholar 

  • Pradeep GS, Krishnan MN, Vijith H (2015) Identification of critical soil erosion prone areas and annual average soil loss in an upland agricultural watershed of Western Ghats, using analytical hierarchy process (AHP) and RUSLE techniques. Arab J Geosci 8(6):3697–3711

    Article  Google Scholar 

  • Rahmati O, Samani AN, Mahdavi M, Pourghasemi HR, Zeinivand H (2015) Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab J Geosci 8(9):7059–7071

    Article  Google Scholar 

  • Rahmati O, Zeinivand H, Besharat M (2016) Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomat Nat Hazards Risk 7(3):1000–1017

    Article  Google Scholar 

  • Razandi Y, Pourghasemi HR, Neisani NS, Rahmati O (2015) Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Sci Inf 8(4):867–883

    Article  Google Scholar 

  • Saaty TL (1980) The analytical hierarchy process, planning, priority. Resource allocation. RWS Publications, New York

    Google Scholar 

  • Saaty TL (1990) Decision making for leaders: the analytic hierarchy process for decisions in a complex world. RWS Publications, New York

    Google Scholar 

  • Saaty TL, Vargas LG (1984) Inconsistency and rank preservation. J Math Psychol 28:205–214

    Article  Google Scholar 

  • Saaty TL, Vargas LG (1991) Prediction, projection and forecasting. Springer, Netherlands

    Book  Google Scholar 

  • Sarkis J (1998) Evaluating environmentally conscious business practices. Eur J Oper Res 107:159–174

    Article  Google Scholar 

  • Sarmento P, Carrão H, Caetano M (2008) A fuzzy synthetic evaluation approach for land cover cartography accuracy assessment. In: Proceedings of the 8th international symposium on spatial accuracy assessment in nat res environ sci, pp 348–355

  • Schmidt DA, Bürgmann R (2003) Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. J Geophys Res B Solid Earth. https://doi.org/10.1029/2002JB00226

    Article  Google Scholar 

  • Sousa T, Silva A, Neves A (2004) Particle swarm based data mining algorithms for classification tasks. Parallel Comput 30:767–783

    Article  Google Scholar 

  • Suh J, Choi Y, Park HD, Yoon SH, Go WR (2013) Subsidence hazard assessment at the Samcheok coalfield, South Korea: a case study using GIS. Environ Eng Geosci 19(1):69–83

    Article  Google Scholar 

  • Sun Y, Kang S, Li F, Zhang L (2009) Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin oasis of northwest China. Environ Modell Softw 24(10):1163–1170

    Article  Google Scholar 

  • Tenerelli P, Carver S (2012) Multi-criteria, multi-objective and uncertainty analysis for agro-energy spatial modelling. Appl Geogr 32:724–736

    Article  Google Scholar 

  • Thill JC (1999) Spatial multicriteria decision making and analysis: a geographic information sciences approach. Ashgate, Brookfield

    Google Scholar 

  • Tiwari DN, Loof R, Paudyal GN (1999) Environmental—economic decision-making in lowland irrigated agriculture using multi-criteria analysis techniques. Agric Syst 60:99–112

    Article  Google Scholar 

  • Vaezinejad SM, Tofigh MM, Marandi SM (2011) Zonation and prediction of land subsidence (case study-Kerman, Iran). Int J Geosci 2:102

    Article  Google Scholar 

  • Zhang RD (2005) Theory and application of spatial variation. Am J Comput Math 2(1)

Download references

Acknowledgements

This research was partly funded by the Austrian Science Fund (FWF) through the GIScience Doctoral College (DK W 1237-N23). We would like to thank Ministry of Water Resource for East Azerbaijan Province (MWREP) and Mr. Behnam Khorrami (Ph.D. candidate in Department of Geographic Information Systems, Dokuz Eylul University) for support and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bakhtiar Feizizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbanzadeh, O., Feizizadeh, B. & Blaschke, T. An interval matrix method used to optimize the decision matrix in AHP technique for land subsidence susceptibility mapping. Environ Earth Sci 77, 584 (2018). https://doi.org/10.1007/s12665-018-7758-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7758-y

Keywords

Navigation