Skip to main content

Advertisement

Log in

Innovative monitoring tools for the complex spatial dynamics of river chemistry: case study for the Alpine region

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Chemical reactions in aqueous geochemical systems are driven by nonequilibrium conditions, and their dynamics can be deduced through the distributional analysis (identification of probability laws) of complex compositional indices. In this perspective, compositional data analysis offers the possibility to investigate the behavior of the composition as a whole instead of isolated chemical species, with the awareness that multispecies systems are characterized by the simultaneous interactions among all their parts. We addressed this problem using D − 1 isometric log-ratio coordinates describing the D compositional dataset of the river chemistry of the Alpine region (D number of variables), thus working in the \({{\mathbb{R}}^{D - 1}}\) statistical sample space. The D − 1 coordinates were chosen using the decreasing variance criterion so that each one could provide information about different space–time properties for the investigated geochemical system. Coordinates dominated by heterogeneity appear to be able to capture regime shifts only on a long-time period and monitor processes on a very wide scale. On the other hand, coordinates characterized by lower variability present multimodality, thus capturing the presence of alternative states in the analyzed spatial domain also for the current time. Further developments are needed to determine the ranges of conditions for which variability and other statistics can be useful indicators of regime shifts on different time–space scales in geochemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agterberg FP (2007) Mixtures of multiplicative cascade models in geochemistry. Nonlinear Process Geophys 14:201–209

    Article  Google Scholar 

  • Ahrens LH (1954) The lognormal distribution of the elements (a fundamental law of geochemistry and its subsidiary). Geochim Cosmochim Acta 5:49–73

    Article  Google Scholar 

  • Aitchison J (1982) The statistical analysis of compositional data (with discussion). J R Stat Soc Ser B 44(2):139–177

    Google Scholar 

  • Aitchison J (1986) The statistical analysis of compositional data. In: Monographs on statistics and applied probability. Chapman and Hall Ltd., London

    Google Scholar 

  • Aitchison J, Brown JAC (1957) The lognormal distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • Allègre CJ, Lewin E (1996) Scaling laws and geochemical distributions. Earth Planet Sci Lett 132:1–13

    Article  Google Scholar 

  • Bard A, Renarda B, Langa M, Giuntolia I, Korckc J, Koboltschnigd G, Janza M, D’Amico M, Volkeng D (2015) Trends in the hydrologic regime of Alpine rivers. J Hydrol 529(3):1823–1837

    Article  Google Scholar 

  • Berner RA (2003) The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426:323–326

    Article  Google Scholar 

  • Bruce AD, Wallace DJ (1989) Critical point phenomena: universal physics at large length scales. In: Davies P (ed) The new physics. Cambridge University Press, Cambridge, pp 236–267

    Google Scholar 

  • Buccianti A, Magli R (2011) Metric concepts and implications in describing compositional changes for world’s rivers water chemistry. Comput Geosci 37(5):670–676

    Article  Google Scholar 

  • Buccianti A, Zuo R (2016) Weathering reactions and isometric log-ratio coordinates: do they speak to each other? Appl Geochem 75(1):189–199

    Article  Google Scholar 

  • Buccianti A, Egozcue JJ, Pawlwosky-Glahn V (2008) Another look at the chemical relationships in the dissolved phase of complex river system. Math Geosci 40(5):475–488

    Article  Google Scholar 

  • Buccianti A, Lima A, Albanese S, De Vivo B (2018) Measuring change under compositional data analysis (CoDA): insight on the dynamics of geochemical systems. J Geochem Explor 189:100–108

    Article  Google Scholar 

  • Chayes F (1960) On correlation between variables of constant sum. J Geophys Res 65(12):4185–4193

    Article  Google Scholar 

  • Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distribution in empirical data. SIAM Rew 51:661–703

    Article  Google Scholar 

  • Dakos V, Carpenter SR, van Nes EH, Scheffer M (2014) Resilience indicators: prospects and limitations for early warnings of regime shifts. Philos Trans R Soc B 370:1–10

    Article  Google Scholar 

  • Dal Piaz GV, Bistacchi A, Massironi M (2003) Geological outline of the Alps. Episodes 26:175–180

    Google Scholar 

  • Donnini M, Frondini F, Probst JL, Probst A, Cardellini C, Marchesini I, Guzzetti F (2016) Chemical weathering and consumption of atmospheric carbon dioxide in the Alpine region. Glob Planet Change 136:65–81

    Article  Google Scholar 

  • Egozcue JJ, Pawlowsky-Glahn V (2005) Groups of parts and their balances in compositional data analysis. Math Geol 37(7):795–828

    Article  Google Scholar 

  • Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barcelo-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35(3):279–300

    Article  Google Scholar 

  • Filzmoser P, Hron K (2008) Outlier detection for compositional data using robust methods. Math Geosci 40(3):233–248

    Article  Google Scholar 

  • Filzmoser P, Hron K, Reimann C (2009) Univariate statistical analysis of environmental (compositional) data: problems and possibilities. Sci Total Environ 407:6100–6108

    Article  Google Scholar 

  • Filzmoser P, Hron K, Reimann C (2010) The bivariate statistical analysis of environmental (compositional) data. Sci Total Environ 408(19):4230–4238

    Article  Google Scholar 

  • Filzmoser P, Hron K, Reimann C (2011) Interpretation of multivariate outliers for compositional data. Comput Geosci 39:77–85

    Article  Google Scholar 

  • Fisher H (2011) A history of the central limit theorem. In: From classical to modern probability theory. Springer, New York

    Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allègre CJ (1999) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159:3–30

    Article  Google Scholar 

  • Goncalves MA (2001) Characterization of geochemical distribution using multifractal models. Math Geol 33:41–61

    Article  Google Scholar 

  • Holden JG, Rajaraman S (2012) The self-organization of a spoken word. Front Psychol 3(209):1–21

    Google Scholar 

  • Hron K, Templ M, Filzmoser P (2010) Imputation of missing values for compositional data using classical and robust methods. Comput Stat Data Anal 54(12):3095–3107

    Article  Google Scholar 

  • Kleidon A (2015) Non-equilibrium thermodynamics maximum entropy production and earth-system evolution. Philos Trans R Soc 368:181–196

    Article  Google Scholar 

  • Kondepudi D, Prigogine I (1998) Modern thermodynamics: from heat engines to dissipative structures. Wiley, Chichester

    Google Scholar 

  • Kump LR, Kasting JF, Crane RG (2009) The earth system, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions cross the sciences: keys and clues. Bioscience 51(5):341–352

    Article  Google Scholar 

  • Martin-Fernandez JA, Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R (2017) Advances in principal balances for compositional data. Math Geosci 50:273–298

    Article  Google Scholar 

  • Mateu-Figueras G, Pawlowsky-Glahn V (2008) A critical approach to probability laws in geochemistry. Math Geosci 40:489–502

    Article  Google Scholar 

  • Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved load. Am J Sci 287:401–428

    Article  Google Scholar 

  • Mitzenmacher M (2004) A brief history of generative models for power law and lognormal distributions. Internet Math 1(2):226–251

    Article  Google Scholar 

  • Monecke T, Monecke J, Herzig PM, Gemmell JB, Monch W (2005) Truncated fractal frequency distribution of element abundance data: a dynamic model for the metasomatic enrichment of base and precious metals. Earth Planet Sci Lett 232:363–378

    Article  Google Scholar 

  • Ott WR (1990) A physical explanation of the lognormality of pollutant concentrations. J Air Waste Manag Assoc 40:1378–1383

    Article  Google Scholar 

  • Pawlowsky-Glahn V, Buccianti A (2011) Compositional data analysis: theory and applications. Wiley, Hoboken

    Book  Google Scholar 

  • Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R (2015) Modeling and analysis of compositional data. Wiley, Hoboken

    Google Scholar 

  • Rantitsch G (2001) The fractal properties of geochemical landscapes as an indicator of weathering and transport processes within the Eastern Alps. J Geochem Explor 73:27–42

    Article  Google Scholar 

  • Reimann C, Filzmoser P (2000) Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environ Geol 39(9):1001–1014

    Article  Google Scholar 

  • Rousseeuw PJ (1984) Least median of squares regression. J Am Stat Assoc 79:871–880

    Article  Google Scholar 

  • Sanchez-Vila X, Dentz M, Donado LD (2007) Transport-controlled reaction rates under local non-equilibrium conditions. Geophys Res Lett 34(10):1–5

    Article  Google Scholar 

  • Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, van de Koppel J, van de Leemput IA, Levin SA, van Nes EH, Pascual M, Vandermeer J (2012) Anticipating critical transitions. Science 338:344–348

    Article  Google Scholar 

  • Schmid SM, Fugenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol Helv 97:93–117

    Article  Google Scholar 

  • Seuront L (2010) Fractals and multifractals in ecology and aquatic science. CRC Press, Boca Raton

    Google Scholar 

  • Shvartsev SL (2012) Internal evolution of the water-rock system: nature and mechanisms. Earth Sci Res J 1(2):106–116

    Google Scholar 

  • Van Rooij MMJW, Nash BA, Rajaraman S, Holden JG (2013) A fractal approach to dynamic inference and distribution analysis. Front Physiol 4:1–16

    Google Scholar 

  • Verboven S, Hubert M (2005) LIBRA: a Matlab library for robust analysis. Chemom Intell Lab Syst 75:127–136

    Article  Google Scholar 

  • Vistelius AB (1960) The skew frequency distributions and the fundamental law of the geochemical processes. J Geol 68:1–22

    Article  Google Scholar 

  • Viviroli D, Weingartner R (2004) The hydrological significance of mountains: from regional to global scale. Hydrol Earth Syst Sci 8:1016–1029

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the University of Florence (Fondi Ateneo 2017 and Strategic plan for 3-year Ph.D. interdisciplinary grants, 2017), the Geobasi Project sustained by Tuscany Region, and the International Association for Mathematical Geosciences (IAMG) for the 2016 Natural Resource Research Student Awards (CG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caterina Gozzi or Antonella Buccianti.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Learning from spatial data: unveiling the geo-environment through quantitative approaches”, guest edited by Sebastiano Trevisani, Marco Cavalli, Jean Golay, and Paulo Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gozzi, C., Graziano, R.S., Frondini, F. et al. Innovative monitoring tools for the complex spatial dynamics of river chemistry: case study for the Alpine region. Environ Earth Sci 77, 579 (2018). https://doi.org/10.1007/s12665-018-7756-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7756-0

Keyword

Navigation