Hydrogeochemical behavior of uranium and thorium in rock and groundwater samples from southeastern of El Bajío Guanajuatese, Guanajuato, Mexico

Abstract

To evaluate the hydrogeochemical processes related to the presence, mobility, and transport of uranium and thorium in the southeastern Sierra de Guanajuato of the Bajio Guanajuatense, Mexico, the concentration of these elements in volcanic rocks and in groundwater were determined. Acidic volcanic rocks contained uranium concentrations of 1.04–6.88 ppm and thorium concentrations of 3.13–15.58 ppm. A basalt rock sample contained 2.58 and 4.07 ppm of uranium and thorium, respectively, and an andesite rock sample contained 4.07 and 8.7 ppm of uranium and thorium, respectively. Scanning electron microscopy with energy-dispersive X-ray spectroscopy showed that U and Th are disseminated throughout the matrix of felsic rocks; in addition, phosphate minerals (probably monazite) containing both elements are present. The concentration of uranium in water samples ranged from 2.23 to 10.3 ppb and of thorium ranged from 0.33 to 0.39 ppb. Geochemical modeling indicated that uranium was mobilized through the transport of the uranyl ions (UO22+) and their complexes, especially carbonates, although other elements such as Fe, Mg, HCO3, and Ca could also be involved in the mobility and transportation of uranium. The obtained results suggest that the mobilization of thorium is very low, almost negligible in some cases, so this element did not present a quantifiable hydrogeochemical pattern. In spite of the low concentrations of U and Th, the existence of high radon concentrations in several samples indicates that additional radioactive species could be naturally present in the hydrogeological environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. American Public Health Association, American Water Works Association (APHA-AWWA) (2005) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington DC

    Google Scholar 

  2. Appelo C, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Rotterdam. https://doi.org/10.1201/9781439833544

    Book  Google Scholar 

  3. ATSDR (2017) Resúmenes de Salud Pública-Torio (Thorium) CAS#:7440-29-1. http://www.atsdr.cdc.gov/es/phs/es_phs147.html. Accessed 20 Apr 2017

  4. Babu MNS, Somashekar RK, Kumar SA, Shivanna K, Krishnamurthy V, Eappen KP (2008) Concentration of uranium levels in groundwater. Int J Environ Sci Technol 5(2):263–266

    Article  Google Scholar 

  5. Bailey EH, Kemp AJ, Ragnarsdottir KV (1993) Determination of uranium and thorium in aqueous solution by inductively coupled plasma mass spectrometry. J Anal At Spectrom 8:551–556

    Article  Google Scholar 

  6. Banks D, Royset O, Strand T, Skarphagen H (1995) Radioelement (U,Th, Rn) concentrations in Norwegian bedrock groundwater. Environ Geol 25:165–180

    Article  Google Scholar 

  7. Banning A, Cardona A, Rüde TR (2012) Uranium and arsenic dynamics in volcano-sedimentary basins—an exemplary study in North-Central Mexico. Appl Geochem 27:2160–2172

    Article  Google Scholar 

  8. Bayer G, Rogers JJW, Adams JAS, Haack UK (1978) Thorium, in handbook of geochemistry. In: Wedepohl HK (ed) Springer, Berlin, p 442. ISSBN: 978-3-642-46302-0$4ISSN: 0072-9817

  9. Brindha K, Elango L, Nair RN (2011) Spatial and temporal variation of uranium in a shallow weathered rock aquifer in southern India. J Earth Syst Sci 120(5):911–920

    Article  Google Scholar 

  10. Cerca-Martínez LM (1998) Relación estratigráfica y geocronológica entre el volcanismo de laSierra madre Occidental y el Cinturón Volcánico Mexicano en la parte sur de la Sierra deGuanajuato. Implicaciones geocronológicas y tectónicas. Tesis de Maestría, Centro deInvestigación Científica y de Educación Superior en Ensenada, UNAM

  11. Chabaux F, Riotte J, Dequincey O (2003) U-Th-Ra fractionation during weathering and river transport. Rev Miner Geochem 52:533–576

    Article  Google Scholar 

  12. Chabaux F, Boturdon B, Riotte (2008) U-series geochemistry in weathering profiles, River Water and Lakes. In: Baxter MS, Krishnaswami S, Cochran JK (eds) U-Th series Nuclides in Aquatic Systems, Radioactivity in the environment, vol 13. Elsevier, New York, p 457

    Google Scholar 

  13. Cothen CR, Lappenbush WL (1983) Occurrence of Uranium in drinking water in the US. Health Phys 45:89–99

    Article  Google Scholar 

  14. Dahlkamp FJ (2009) Uranium deposits of the World Asia X. Springer, Berlin, p 494

    Book  Google Scholar 

  15. Dahlkamp FJ (2010) Uranium deposits of the World USA and Latin America XVI. Springer, Berlin Heidelberg, p 520

    Book  Google Scholar 

  16. Dahlkamp FJ (2016) Uranium deposits of the World Europe XIX. Springer, Berlin, p 792

    Book  Google Scholar 

  17. Dekkers MJ, Vriend SP, Van D Ph, Van der Weijden CH, Oosterom MG (1983) Geochemical controls of transport and deposition of uranium from solution. Case study: Sao Pedro do Sul (Portugal), Extern Rep, Inst Earth Sci, State Univ, Utrecht, p 54

  18. Garshasbi H, Diba JK, Jahanbakhshian MH, Asghari SK, Heravi GH (2005) Measurements of natural uranium concentration in Caspian Sea and Persian Gulf water by laser flourimetric method. Iran J Radiat Res 3(3):123–127

    Google Scholar 

  19. Goodell PC (1985) Chihuahua City uranium province, Chihuahua, Mexico. In: Uranium deposits in volcanic rocks. IAEA, Vienna, pp 97–127

    Google Scholar 

  20. Hess CT, Michel J, Horton TR, Prichard HM, Coniglio WA (1985) The occurrence of radioactivity in public water supplies in the United States. Health Phys 48(5):553–586

    Article  Google Scholar 

  21. Johnson BR, Miller TP, Karl S (1979) Uranium–thorium investigations of the Darby pluton, Seward Peninsula, Alaska. US Geol Surv Circ 804-B:68–70

    Google Scholar 

  22. Kansal S, Mehra R, Singh NP (2011) Uranium concentration in groundwater samples belonging to some areas of Western Haryana, India using fission track registration technique. J Public Health Epidemiol 3:352–357

    Google Scholar 

  23. Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle River, p 586

    Google Scholar 

  24. Langmuir D, Herman JS (1980) The mobility of thorium in natural waters at low temperatures. Geochem Cosmochim Acta 44:1753–1766

    Article  Google Scholar 

  25. Locardi E, Mittempergher M (1971) Exhalative supergenic uranium, thorium and marcasite ocurrences in quaternary volcanites of Central Italy. Bull Volcanol 35:173–184

    Article  Google Scholar 

  26. Magonthier MC (1985) Caracteristicas petrográficas y geoquímicas de las unidades ignimbríticas portadoras de mineralización de uranio de la Sierra Peña Blanca, México in: uranium deposits in volcanic rocks. IAEA, Vienna, pp 137–150

    Google Scholar 

  27. Massey MS, Lezama-Pacheco JS, Michel FM, Fendorf S (2014) Uranium incorporation into aluminum-substituted ferrihydrite during iron(II)-induced transformation. Environ Sci Process Impacts 16:2137–2144

    Article  Google Scholar 

  28. Morales I, Villanueva-Estrada RE, Rodríguez R, Armienta MA (2015) Geological, hydrogeological, and geothermal factors associated to the origin of arsenic, fluoride, and groundwater temperature in a volcanic environment “El Bajío Guanajuatense” Mexico. Environ Earth Sci 74:5403–5415

    Article  Google Scholar 

  29. Morales-Arredondo I, Rodríguez R, Armienta MA (2016a) Villanueva-Estrada R.E. The origin of groundwater arsenic and fluorine in a volcanic sedimentary basin in central Mexico: a hydrochemistry hypothesis. Hydrogeol J 1:1–10

    Google Scholar 

  30. Morales-Arredondo I, Rodríguez R, Armienta MA, Villanueva-Estrada RE (2016b) A low-temperature geothermal system in central Mexico: hydrogeochemistry and potential heat source. Geochem J 50(3):211–225

    Article  Google Scholar 

  31. Morales-Arredondo JI, Esteller-Alberich MV, Armienta-Hernández MA, Martínez-Florentino TAK (2018) Characterizing the hydrogeochemistry of two low-temperature thermal systems in Central Mexico. J Geochem Explor 185:93–104

    Article  Google Scholar 

  32. Morgan JW, Lovering JF (1965) Uranium and thorium abundance in the basalt cored in Mohole Project (Guadalupe Site). J Geophys Res 70(18):4724–4725

    Article  Google Scholar 

  33. Navarro A, Font X, Viladevall M (2011) Estudio de la concentración de uranio en las aguas subterráneas de las cordilleras costeras catalanas. Artículo Técnico. Tecnología del agua, pp 29–39

  34. Nieto-Samaniego AF, Ferrari L, Alaniz-Alvarez SA, LabartheHernández G, y Rosas-Elguera J (1999) Variation of cenozoic extension and volcanism across the southern Sierra Madre Occidental Volcanic Province. Geol Soc Am Bull Mexico 111:347–363

    Article  Google Scholar 

  35. Nieto-Samaniego AF, Ojeda-Gacía AC, Alaníz-Álvarez SA, Xu S (2012) Geología de la región de Salamanca, Guanajuato, México. Boletín de la Sociedad Geológica Mexicana 64(3):411–425

    Article  Google Scholar 

  36. Nolan J, Weber KA (2015) Natural uranium contamination in major US. Aquifers linked to nitrate. Environ Sci Technol Lett 2:215–220

    Article  Google Scholar 

  37. OECD(NEA)/IAEA (1986) Uranium resources, production and demand. Paris (biannual joint reports) (Red book)

  38. OECD(NEA)/IAEA (2001) Uranium resources, production and demand. Paris (biannual joint reports) (Red book)

  39. OECD(NEA)/IAEA (2005) Uranium resources, production and demand. Paris (biannual joint reports) (Red book)

  40. OECD(NEA)/IAEA (2007) Uranium resources, production and demand. Paris (biannual joint reports) (Red book)

  41. Orloff KG, Mistry K, Charp P, Metcalf S, Marino R, Shelly T, Melaro E, Donohoe AM, Jones RL (2004) Human exposure to uranium in groundwater. Environ Res 94(03):319–326

    Article  Google Scholar 

  42. Porcelli D, Swarzenski PW (2003) The Behavior of U- and Th-serie nuclides in groundwater. In: Bourdon B, Henderson GH, Lundstrom CC, Turner SP (eds) 2003 uranium-series geochemistry, vol 52, pp 317–362 (ISBN: 0-939950-64-2)

    Article  Google Scholar 

  43. Reyes-Cortés M, Reyes-Cortés IA, Espino S, Rentería-Villalobos M, Burillo JC, Montero-Cabrera ME (2012) Origen y distribución de la radiactividad natural en la zona norte de la cuenca de Chihuahua, Mexico. Rev Mex Cienc Geol 29(3):659–675

    Google Scholar 

  44. Rodríguez R, Morales I, Armienta A, Villanueva R, Segovia N (2015) Geothermal systems of low temperature in Mexican highlands: alternative uses and associated risks. Proc Environ Sci 25:214–219

    Article  Google Scholar 

  45. Rodríguez R, Morales-Arredondo I, Rodríguez I (2016) Geological differentiation of groundwater threshold concentrations of arsenic, vanadium and fluorine in El Bajio Guanajuatense, Mexico. Geofís Int 1:1–10

    Google Scholar 

  46. Rodríguez-Torres R, Dominguez RY, Chávez-Aguirre R, Constantino HE (1979) Rocas volcánicas ácidas y su potencial como objetivos para prospectar uranio. International Atomic Energy Agency, Vienna

    Google Scholar 

  47. Romberger SB (1984) Transport and deposition of uranium in hydrothermal systems at temperature up to 300 °C: geological implications. In: De Vivo B, Ippolito F, Capaldi G, Simpson PR (eds) Uranium geochemistry, mineralogy, geology, exploration and resources. The institution of mining and metallurgy, London

    Google Scholar 

  48. Rosholt JN, Doe BR, Tatsumoto M (1966) Evaluation of the isotopic composition of uranium and thorium in soil profiles. Geol Soc Am Bull 77:987–1004

    Article  Google Scholar 

  49. Segovia N, Bulbulian S (1992) Radon determination in groundwater. Revista Mexicana de Física 38(1):242–248

    Google Scholar 

  50. Smedley PL, Smith B, Abesser C, Lapworth D (2006) Uranium occurrence and behavior in British groundwater. British Geological Survey Commissioned Report, CR/06/050N, p 60

  51. Tzortzis M, Tsertos H (2004) Determination of thorium, uranium and potassium elemental concentrations in surface soils in Cyprus. J Environ Radioact 77(3):325–338

    Article  Google Scholar 

  52. Villalba ML, Colmenero LH, Montero ME (2011) Análisis y dosimetría de radionúclidos en agua; Estudio realizado en Chihuahua, México. Editorial Académica Española, Madrid

    Google Scholar 

  53. Voronov AN (2004) Radon-rich waters in Russia. Environ Geol 46:630–634

    Article  Google Scholar 

  54. Wenrich KJ (1985) Geochemical characteristics of uranium-enriched volcanic rocks. In: Uranium deposits in volcanic rocks. IAEA. International Atomic Energy Agency, Vienna (Austria), Panel proceedings series, 468 p. ISBN 92-0-041085-5, Worldcat 1985, IAEA, Vienna (Austria), Technical committee meeting on uranium deposits in volcanic rocks, El Paso, TX (USA), 2-5 Apr 1984, IAEA, Vienna, pp 29–52

    Google Scholar 

  55. Wu Y, Wang Y, Xie X (2014) Ocurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, northern China. Sci Total Environ 472:809–817

    Article  Google Scholar 

Download references

Acknowledgements

The research was financed partially by Gran no. 207032-2013-04 of the CeMIE-Geo, Fondo Sectorial Conacyt-Sener-Sustentabilidad Energética. We extend our gratitude to O. Cruz, A. Aguayo, N. Ceniceros, and E. Hernández-Álvarez for performing the chemical determinations, to A. Rodríguez-Díaz for carrying out the mineralogical determinations through SEM-EDS, to I. Flores-Ocampo and R. Flores-Vargas for her support during field work, and to the Mexican National Water Commission (Comisión Nacional de Agua) for its support during water sampling in the study area.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. I. Morales-Arredondo.

Additional information

The present article is dedicated in memory of Dr. Ramiro Rodríguez C.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morales-Arredondo, J.I., Hernández, M.A.A., Hernández-Mendiola, E. et al. Hydrogeochemical behavior of uranium and thorium in rock and groundwater samples from southeastern of El Bajío Guanajuatese, Guanajuato, Mexico. Environ Earth Sci 77, 567 (2018). https://doi.org/10.1007/s12665-018-7749-z

Download citation

Keywords

  • Uranium
  • Groundwater
  • Felsic rocks
  • Sierra de Guanajuato
  • Thorium