Skip to main content

Advertisement

Log in

Impact of drilling mud on chemistry and microbiology of an Upper Triassic groundwater after drilling and testing an exploration well for aquifer thermal energy storage in Berlin (Germany)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

After completion of an exploration well, sandstones of the Exter Formation were hydraulically tested to determine the hydraulic properties and to evaluate chemical and microbial processes caused by drilling and water production. The aim was to determine the suitability of the formation as a reservoir for aquifer thermal energy storage. The tests revealed a hydraulic conductivity of 1–2 E-5 m/s of the reservoir, resulting in a productivity index of 0.6–1 m3/h/bar. A hydraulic connection of the Exter Formation to the overlaying, artesian “Rupelbasissand” cannot be excluded. Water samples were collected for chemical and microbiological analyses. The water was similarly composed as sea water with a maximum salinity of 24.9 g/L, dominated by NaCl (15.6 g/L Cl and 7.8 g/L Na). Until the end of the tests, the water was affected by drilling mud as indicated by the high pH (8.9) and high bicarbonate concentration (359 mg/L) that both resulted from the impact of sodium carbonate (Na2CO3) additives. The high amount of dissolved organic matter (> 58 mg/L) and its molecular-weight distribution pattern indicated that residues of cellulose, an ingredient of the drilling mud, were still present at the end of the tests. Clear evidence of this contamination gave the measured uranine that was added as a tracer into the drilling mud. During fluid production, the microbial community structure and abundance changed and correlated with the content of drilling mud. Eight taxa of sulfate-reducing bacteria, key organisms in processes like bio-corrosion and bio-clogging, were identified. It can be assumed that their activity will be affected during usage of the reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alawi M, Lerm S, Vetter A, Wolfgramm M, Seibt A, Würdemann H (2011) Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy. Grundwasser 16:105–112

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2009) Geochemistry, groundwater and pollution, 2. Aufl. A.A. Balkema, Leiden

    Google Scholar 

  • Banzhaf S, Krein A, Scheytt T (2013) Using selected pharmaceutical compounds as indicators for surface water and groundwater interaction in the hyporheic zone of a low permeability riverbank. Hydrol Process 27(20):2892–2902

    Google Scholar 

  • Barth G, Franz M, Heunisch C, Wolfgramm M (2013) Deep geothermal reservoirs of the Lower Exter Formation (Upper Keuper, Triassic) in the North German Basin: the geothermal potential of distributive fluvial systems. DMG-Gv Meeting Tübingen, abstract volume

  • Bauer D, Marx R, Nußbicker-Lux J, Ochs F, Heidemann W, Müller-Steinhagen H (2010) German central solar heating plants with seasonal heat storage. Sol Energy 84(4):612–623

    Article  Google Scholar 

  • Beech IB, Sunner J (2004) Biocorrosion towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186

    Article  Google Scholar 

  • Beyer W (1964) Zur Bestimmung der Wasserdurchlassigkeit von Kiesen und Sanden aus der ornverteilung. Wasserwirtschaft Wassertechnik (WWT) 6:165–169

    Google Scholar 

  • Birsoy YK, Summers WK (1980) Determination of aquifer parameters from step tests and intermittent pumping data. Groundwater 18(2):137–146

    Article  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman, FD & other authors (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci 108: 4516–4522. https://doi.org/10.1073/pnas.1000080107

    Article  Google Scholar 

  • Cummings DE, Caccavo F Jr, Spring S, Rosenzweig RF (1999) Ferribacterium limneticum, gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch Microbiol 171:183–188

    Article  Google Scholar 

  • DVGW, Deutscher Verein des Gas- und Wasserfaches (1998) Verwendung von Spülungszusätzen in Bohrspülungen bei Bohrarbeiten im Grundwasser. DVGW-Regelwerk, Merkblatt 116, Bonn

    Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    Article  Google Scholar 

  • Feldbusch E, Regenspurg S, Banks J, Milsch H, Saadat A (2013) Alteration of fluid properties during the initial operation of a geothermal plant: results from in situ measurements in Groß Schönebeck. Environ Earth Sci 70(8):3447–3458

    Article  Google Scholar 

  • Filippidou S, Jaussi M, Junier T, Wunderlin T, Jeanneret N, Palmieri F et al (2016) Anoxybacillusgeothermalis sp. nov., a facultatively anaerobic, endospore-forming bacterium isolated from mineral deposits in a geothermal station. International journal of systematic evolutionary microbiology 66(8):2944–2951

    Article  Google Scholar 

  • Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, van der Lelie D, Vanbroekhoven K (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Methods 66:194–205. https://doi.org/10.1016/j.mimet.2005.11.002

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST—palaeontological statistics, ver. 1.89. Palaeontol Electron 4(1):1–9

    Google Scholar 

  • Huber SA, Balz A, Abert M, Pronk W (2011) Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography–organic carbon detection–organic nitrogen detection (LC–OCD–OND). Water Res 45(2):879–885

    Article  Google Scholar 

  • Javerhadashti R (2008) Microbiologically influenced corrosion. An engineering insight. Springer, London

    Google Scholar 

  • Kabus F, Wolfgramm M, Seibt A, Richlak U, Beuster H (2009) Aquifer thermal energy storage in Neubrandenburg: monitoring throughout three years of regular operation. In Proceedings of the 11th international conference on energy storage

  • Käss W (2004) Geohydrologische Markierungstechnik: Mit 43 Tabellen. XIV, 557 S.In. In: Lehrbuch der Hydrogeologie, Bd. 9, 2. Aufl. Borntraeger, Stuttgart

    Google Scholar 

  • Krauze P, Kämpf H, Horn F, Liu Q, Voropaev A, Wagner D, Alawi M (2017) Microbiological and geochemical survey of CO2-dominated mofette and mineral waters of the Cheb Basin, Czech Republic. Front Microbiol 8:2466. https://doi.org/10.3389/fmicb.2017.02446

    Article  Google Scholar 

  • Langguth HR, Voigt R (2004) Hydrogeologische Methoden. xiv, 1005, 2. Aufl. Springer, Berlin

    Google Scholar 

  • Lee KS (2013) Aquifer thermal energy storage. In: Underground thermal energy storage. Springer, London, pp 59–93

    Chapter  Google Scholar 

  • Lerm S, Alawi M, Miethling-Graff R, Wolfgramm M, Rauppach K, Seibt A, Würdemann H (2011) Influence of microbial processes on the operation of a cold store in a shallow aquifer: impact on well injectivity and filter lifetime. Grundwasser 16(2):93–104

    Article  Google Scholar 

  • Little BJ, Lee JS (2007) Microbiologically influenced corrosion. Wiley, Hoboken

    Book  Google Scholar 

  • Magal E, Weisbrod N, Yakirevich A, Yechieli Y (2008) The use of fluorescent dyes as tracers in highly saline groundwater. J Hydrol 358:124–133

    Article  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10

    Article  Google Scholar 

  • McCaughey M, Divine CE, Gefell MJ, McGrane S (2016) Using tracers to quantify drilling water influence and obtain representative groundwater samples. Groundw Monit Remediat 36(1):71–78

    Article  Google Scholar 

  • Morozova D, Wandrey M, Zimmer M, Pilz P, Zettlitzer M, Würdemann H, the CO2SINK Group (2010) Monitoring of the microbial community composition in saline aquifers during CO2 sequestration by fluorescence in situ hybridisation. Int J Greenh Gas Control 4:981–989. https://doi.org/10.1016/j.ijggc.2009.11.014

    Article  Google Scholar 

  • Müller D, Regenspurg S (2014) Geochemical characterization of the Lower Jurassic aquifer in Berlin (Germany) for aquifer thermal energy storage applications. Energy Procedia 59:285–292

    Article  Google Scholar 

  • Müller DR, Friedland G, Regenspurg S (2017) An improved sequential extraction method to determine element mobility in pyrite-bearing siliciclastic rocks. Int J Environ Anal Chem 97(2):168–188

    Article  Google Scholar 

  • Mundhenk N, Huttenloch P, Sanjuan B, Kohl T, Steger H, Zorn R (2013) Corrosion and scaling as interrelated phenomena in an operating geothermal power plant. Corros Sci 70:17–28

    Article  Google Scholar 

  • Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266

    Article  Google Scholar 

  • Paksoy H, Snijders A, Stiles L (2009) State-of-the-art review of aquifer thermal energy storage systems for heating and cooling buildings. In: Proceedings of the EFFSTOCK conference, Stockholm, Sweden

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations

  • Pellizzari L, Neumann D, Alawi M, Voigt D, Norden B, Würdemann H (2013) Use of tracers to assess drill mud penetration depth into sandstone rock cores during deep drilling: method development and application. Environ Earth Sci 70:3727–3738. https://doi.org/10.1007/s12665-013-2715-2

    Article  Google Scholar 

  • Pellizzari L, Lienen T, Kasina M, Würdemann H (2017) Influence of drill mud on the microbial communities of sandstone rocks and well fluids at the Ketzin pilot site for CO2 storage. Environ Earth Sci. https://doi.org/10.1007/s12665-016-6381-z

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(Database issue):D590–D596. pmid:23193283

    Google Scholar 

  • Regenspurg S, Feldbusch E, Byrne J, Deon F, Driba DL, Henninges J, Kappler A, Naumann R, Reinsch T, Schubert C (2015) Mineral precipitation during production of geothermal fluid from a Permian Rotliegend reservoir. Geothermics 54:122–135

    Article  Google Scholar 

  • Regenspurg S. Feldbusch E, Norden B, Tichomirowa M (2016) Fluid–rock interactions in a geothermal Rotliegend/Permo-Carboniferous reservoir (North German Basin). Appl Geochem 69:12–27

    Article  Google Scholar 

  • Robertson WJ, Bowman JP, Franzmann PD, Mee BJ (2001) Desulfosporosinus meridiei sp. nov., a spore-forming sulfatereducing bacterium isolated from gasolene-contaminated groundwater. Int J Syst Evol Microbiol 51:133–140

    Article  Google Scholar 

  • Rozanova EP, Nazina TN, Galushko AS (1988) Isolation of a new genus of sulfate-reducing bacteria and the description of its new species Desulfomicrobium apsheromum gen, nov., sp. nov. Mikrobiologiya 57:514–520

    Google Scholar 

  • Saadat A, Blöcher G, Francke H, Huenges E, Kranz S, Kupfermann A, Norden B, Regenspurg S (2016) Effizienz und Betriebssicherheit von Energiesystemen mit saisonaler Energiespeicherung in Aquiferen für Stadtquartiere. FKZ 03ESP409A. Abschlussbericht des Teilprojekts “Gesamtsystem“

  • Sanner B, Kabus F, Seibt P, Bartels J (2005) Underground thermal energy storage for the German Parliament in Berlin, system concept and operational experiences. In Proceedings world geothermal congress, vol 1, pp 1–8

  • Schneider J, Eggeling L, Hesshaus A (2014) Tiefengrundwassercharakteristik und hydrochemische Untersuchung. In: Bauer M, Freeden W, Jacobi H, Neu T (Hrsg) Handbuch Tiefe Geothermie: Prospektion, Exploration, Realisierung, Nutzung. Springer Spektrum, Berlin, pp 559–594

    Google Scholar 

  • Schouw A, Leiknes Eide T, Stokke R, Birger Pedersen R, Helene Steen I, Bodtker G (2016) Abyssivirga alkaniphila gen. nov., sp. nov., an alkane-degrading, anaerobic bacterium from a deep-sea hydrothermal vent system, and emended descriptions of Natranaerovirga pectinivora and Natranaerovirga hydrolytica. Int J Syst Evol Microbiol 66:1724–1734

    Article  Google Scholar 

  • Seelheim F (1880) Methoden zur Bestimmung der Durchlässigkeit des Bodens. Zeitschrift für analytische Chemie 19(1):387–418

    Article  Google Scholar 

  • Steinberg LM, Regan JM (2009) mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl Environ Microbiol 75(13):4435–4442

    Article  Google Scholar 

  • Stober I, Bucher K (2014) Geothermie. Online-Ressource (online resource), 2. Aufl. Springer Spektrum, Berlin (SpringerLink: Bücher)

    Google Scholar 

  • Stober I, Wolfgramm M, Birner J (2014) Hydrochemie der Tiefenwässer in Deutschland. Zeitschrift für geologische Wissenschaften 41(42):339–380

    Google Scholar 

  • Struchtemeyer CG, Davis JP, Elshahed MS (2011) Influence of the drilling mud formulation process on the bacterial communities in thermogenic natural gas wells of the Barnett shale. Appl Environ Microbiol 77(14):4744–4753

    Article  Google Scholar 

  • Takai K, Abe M, Miyazaki M, Koide O, Nunoura T, Imachi H, Inagaki F, Kobayashi T (2013) Sunxiuqinia faeciviva sp. nov., a facultatively anaerobic organoheterotroph of the Bacteroidetes isolated from deep subseafloor sediment. Int J Syst Evol Microbiol 63:1602–1609

    Article  Google Scholar 

  • Theis CV (1935) The relation between the lowering of the Piezometric surface and the rate and duration of discharge of a well using ground-water storage. Eos Trans Am Geophys Union 16(2):519–524

    Article  Google Scholar 

  • Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982

    Google Scholar 

  • Wiese B, Zimmer M, Nowak M, Pellizzari L, Pilz P (2013) Well-based hydraulic and geochemical monitoring of the above zone of the CO2 reservoir at Ketzin, Germany. Environ Earth Sci 70(8):3709–3726

    Article  Google Scholar 

  • Wolfgramm M, Thorwart K, Rauppach K, Brandes J (2011) Zusammensetzung, Herkunft und Genese geothermaler Tiefengrundwässer im Norddeutschen Becken (NDB) und deren Relevanz für die geothermische Nutzung. Zeitschrift für geologische Wissenschaften 39(3–4):173.193

    Google Scholar 

  • Zhang MY, Fan L, Liu QZ, Song Y, Wei SW, Zhang SL, Wu J (2014) A novel set of EST-derived SSR markers for pear and cross-species transferability in Rosaceae. Plant Mol Biol Rep 32(1):290–302

    Article  Google Scholar 

  • Zhu Y, Vieth-Hillebrand A, Wilke FD, Horsfield B (2015) Characterization of water-soluble organic compounds released from black shales and coals. Int J Coal Geol 150:265–275

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Iris Pieper of the “Geochemisches Gemeinschaftslabor” at the Technical University of Berlin for inorganic ion analysis and Sarah Zeilfelder for assistance during sampling. Kristin Günther and Georg Schettler from GFZ are acknowledged for the analysis of organic components and grain-size distribution of cuttings, respectively. A special thanks goes to Fabian Horn (GFZ) for helping to process the DNA sequence data. The research was funded by the German Ministry of Energy and Economics (BMWi) within the research and demonstration project “Efficiency and safety of energy systems with seasonal energy storage in aquifers for urban quarters”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Regenspurg.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regenspurg, S., Alawi, M., Blöcher, G. et al. Impact of drilling mud on chemistry and microbiology of an Upper Triassic groundwater after drilling and testing an exploration well for aquifer thermal energy storage in Berlin (Germany). Environ Earth Sci 77, 516 (2018). https://doi.org/10.1007/s12665-018-7696-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7696-8

Keywords

Navigation