Salt weathering in granitoids: an overview on the controlling factors

Abstract

Historically granite is one of the most applied building materials worldwide. Building stones should accomplish several properties required by different testing materials standards. Salt weathering affects the aesthetical properties of the stones and eventually diminish their durability. The use of weathered granites has increased in the last several decades, but their behavior under adverse environmental conditions requires continued investigation. The use of salt for the prevention of ice formation in colder climates can have harmful consequences on high-porosity stones. Twenty-eight different stones, mostly granitoids, all of them often used as dimensional building stones, were subjected to the salt bursting test. The porosity and the pore network are important parameters in salt weathering; therefore, the pore radii distribution and capillary water uptake were measured. The capillary pores and related porosity are the main factors controlling the behavior of the studied stones under salt action. However, the pore radii size and distribution also plays an important role. In some cases, the salt action is only visible after a high number of test cycles, thus making the actual salt test standards unrealistic.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Modified from Mosch (2008)

Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

References

  1. Abad SVANK, Tugrul A, Gokceoglu C, Armaghani DJ (2016) Characteristics of weathering zones of granitic rocks in Malaysia for geotechnical engineering design. Eng Geol 200:94–103. https://doi.org/10.1016/j.enggeo.2015.12.006

    Article  Google Scholar 

  2. Alonso FJ, Vázquez P, Esbert RM, Ordaz J (2008) Ornamental granite durability: evaluation of damage caused by salt crystallization test. Mater Constr 58(289–290):191–201

    Google Scholar 

  3. Angeli M, Bigas J-P, Benavente D, Menendez B, Hébert R, David C (2007) Salt crystallization in pores: quantification and estimation of damage. Environ Geol 52:205–213. https://doi.org/10.1007/s00254-006-0474-z

    Article  Google Scholar 

  4. Anovitz LM, Cole DR (2015) Characterization and analysis of porosity and pore structures. Rev Mineral Geochem 80:61–164. https://doi.org/10.2138/rmg.2015.80.04

    Article  Google Scholar 

  5. Arıkan F, Ulusay R, Aydın N (2007) Characterization of weathered acidic volcanic rocks and a weathering classification based on a rating system. Bull Eng Geol Environ 66:415–430. https://doi.org/10.1007/s10064-007-0087-0

    Article  Google Scholar 

  6. Barbera G, Barone G, Crupi V, Longo F, Maisano G, Majolino D, Mazzoleni P, Raneri S, Teixeira J, Venut V (2014) A multi-technique approach for the determination of the porous structure of building stone. Eur J Mineral 26:189–198. https://doi.org/10.1127/0935-1221/2014/0026-2355

    Article  Google Scholar 

  7. Begonha AJS (1997) Meteorização do granito e deterioração da pedra em monumentos e edifícios da cidade do Porto. PhD Thesis, University of Minho

  8. Begonha A (2009) Mineralogical study of the deterioration of granite stones of two Portuguese churches and characterization of the salt solutions in the porous network by the presence of diatoms. Mater Charact 60:621–635. https://doi.org/10.1016/j.matchar.2008.12.019

    Article  Google Scholar 

  9. Benavente D, García del Cura MA, García-Guinea J, Sánchez-Moral S, Ordóñez S (2004a) Role of pore structure in salt crystallisation in unsaturated porous stone. J Cryst Growth 260:532–544. https://doi.org/10.1016/j.jcrysgro.2003.09.004

    Article  Google Scholar 

  10. Benavente D, García del Cura MA, Fort R, Sánchez-Moral S, Ordóñez S (2004b) Durability estimation of porous building stones from pore structure and strength. Eng Geol 74:113–127. https://doi.org/10.1016/j.enggeo.2004.03.005

    Article  Google Scholar 

  11. Berrezueta E, Kovacs T, Luquot L (2017) Qualitative and quantitative changes of carbonate rocks exposed to SC CO2 (Basque-Cantabrian Basin, northern Spain). Appl Sci 7:1124. https://doi.org/10.3390/app7111124

    Article  Google Scholar 

  12. Braga R, Peddis F, Perondi C (2012) Yellowing of a white granite pavement in urban environment: the Fe-rich patina of Piazza Cavalli, Piacenza (Italy). Periodico Mineral 81(3):345–357. https://doi.org/10.2451/2012PM0020

    Google Scholar 

  13. Bré JMO (2008) Capela do Senhor da Pedra: Diagnóstico e Proposta de Tratamento da Pedra. Master Thesis, Instituto Superior de Engenharia do Porto

  14. Buj O, Gisbert J (2010) Influence of pore morphology on the durability of sedimentary building stones from Aragon (Spain) subjected to standard salt decay tests. Environ Earth Sci 61:1327–1336. https://doi.org/10.1007/s12665-010-0451-4

    Article  Google Scholar 

  15. Cardell C, Delalieux F, Roumpopoulos K, Moropoulou A, Auger F, Van Grieken R (2003) Salt-induced decay in calcareous stone monuments and buildings in a marine environment in SW France. Constr Build Mater 17:165–179

    Article  Google Scholar 

  16. Caruso F, Flatt RJ (2012) Measuring crystallization pressure: can the Correns’ experiment be repeated? In: Proceedings of 12th international congress on the deterioration and conservation of stone. Columbia University, New York

    Google Scholar 

  17. Çelik MY, Kaçmaz AU (2016) The investigation of static and dynamic capillary by water absorption in porous building stones under normal and salty water conditions. Environ Earth Sci 75:307. https://doi.org/10.1007/s12665-015-5132-x

    Article  Google Scholar 

  18. Ceryan S (2015) New weathering indices for evaluating durability and weathering characterization of crystalline rock material: a case study from NE Turkey. J Afr Earth Sc 103:54–64. https://doi.org/10.1016/j.jafrearsci.2014.12.005

    Article  Google Scholar 

  19. Coletti C, Cultrone G, Maritana L, Mazzoli C (2016) Combined multi-analytical approach for study of pore system in bricks: how much porosity is there? Mater Charact 121:82–92. https://doi.org/10.1016/j.matchar.2016.09.024

    Article  Google Scholar 

  20. Comite V, Álvarez de Buergo M, Barca D, Belfiore CM, Bonazza A, La Russa a MF, Pezzino A, Randazzo L, Ruffolo SA (2017) Damage monitoring on carbonate stones: field exposure tests contributing to pollution impact evaluation in two Italian sites. Constr Build Mater 152:907–922. https://doi.org/10.1016/j.conbuildmat.2017.07.048

    Article  Google Scholar 

  21. Correns CW, Steinborn W (1939) Experiment zur Messung und Erklärung der sogenannten Kristallisationskraft. Z Krist 37:228–238

    Google Scholar 

  22. Dultz S, Simonyan AV, Pastrana J, Behrens H, Plötze M, Rath T (2013) Implications of pore space characteristics on diffusive transport in basalts and granites. Environ Earth Sci 69:969–985. https://doi.org/10.1007/s12665-012-1981-8

    Article  Google Scholar 

  23. Eslami J, Grgic D, Hoxha D (2010) Estimation of the damage of a porous limestone from continuous (P- and S-) wave velocity measurements under uniaxial loading and different hydrous conditions. Geophys J Int 183:1362–1375. https://doi.org/10.1111/j.1365-246X.2010.04801.x

    Article  Google Scholar 

  24. Espinosa-Marzal RM, Scherer GW (2008) Crystallization of sodium sulfate salts in limestone. Environ Geol 56:605–621. https://doi.org/10.1007/s00254-008-1441-7

    Article  Google Scholar 

  25. Espinosa-Marzal RM, Scherer GW (2013) Impact of in-pore salt crystallization on transport properties. Environ Earth Sci 69:2657–2669. https://doi.org/10.1007/s12665-012-2087-z

    Article  Google Scholar 

  26. Espinosa-Marzal RM, Hamilton A, McNall M, Whitaker K, Scherer GW (2011) The chemomechanics of crystallization during rewetting of limestone impregnated with sodium sulfate. J Mater Res 26(12):1472–1481. https://doi.org/10.1557/jmr.2011.137

    Article  Google Scholar 

  27. Feijoo J, Nóvoa XR, Rivas T, Mosquera MJ, Taboada J, Montojo C, Carrera F (2013) Granite desalination using electromigration. Influence of type of granite and saline contaminant. J Cult Heritage 14:365–376. https://doi.org/10.1016/j.culher.2012.09.004

    Article  Google Scholar 

  28. Feijoo J, Nóvoa XR, Rivas T (2017) Electrokinetic treatment to increase bearing capacity and durability of a granite. Mater Struct 50:251. https://doi.org/10.1617/s11527-017-1123-6

    Article  Google Scholar 

  29. Flatt RJ, Mohamed NA, Caruso F, Derluyn H, Desarnaud J, Lubelli B, Espinosa-Marzal RM, Pel L, Rodriguez-Navarro C, Scherer GW, Shahidzadeh N, Steiger M (2017) Predicting salt damage in practice: a theoretical insight into laboratory tests. RILEM Tech Lett 2:108–118. https://doi.org/10.21809/rilemtechlett.2017.41

    Article  Google Scholar 

  30. Forestieri G, Freire-Lista DM, Francesco AM, Pontea M, Fort R (2017) Strength anisotropy in building granites. Int J Architectural Heritage 11:8. https://doi.org/10.1080/15583058.2017.1354096

    Google Scholar 

  31. Freire-Lista DM, Fort R (2017) Exfoliation microcracks in building granite. Implications for anisotropy. Eng Geol 220:85–93. https://doi.org/10.1016/j.enggeo.2017.01.027

    Article  Google Scholar 

  32. Graue B, Siegesmund S, Middendorf B (2011) Quality assessment of replacement stones for the Cologne Cathedral: mineralogical and petrophysical requirements. Environ Earth Sci 63:1799–1822. https://doi.org/10.1007/s12665-011-1077-x

    Article  Google Scholar 

  33. Graue B, Siegesmund S, Oyhantcabal P, Naumann R, Licha T, Simon K (2013) The effect of air pollution on stone decay: the decay of the Drachenfels trachyte in industrial, urban, and rural environments—a case study of the Cologne, Altenberg and Xanten Cathedrals. Environ Earth Sci 69(4):1095–1124. https://doi.org/10.1007/s12665-012-2161-6

    Article  Google Scholar 

  34. Hirschwald J (1912) Die Prüfung der natürlichen Bausteine auf ihre Verwitterungsbeständigkeit. Verlag W Ernest & Sohn, Berlin

    Google Scholar 

  35. Hosono T, Uchida E, Suda C, Ueno A, Nakagawa T (2006) Salt weathering of sandstone at the Angkor Monuments, Cambodia: identification of the origins of salts using sulfur and strontium isotopes. J Archaeol Sci 33:1541–1551. https://doi.org/10.1016/j.jas.2006.01.018

    Article  Google Scholar 

  36. ICOMOS-ISCS (2008) Illustrated glossary on stone deterioration patterns. English–French version. ICOMOS Documentation Centre, Paris

    Google Scholar 

  37. Karagiannis N, Karoglou M, Bakolas A, Moropoulou A (2016) Building materials capillary rise coefficient: concepts, determination and parameters involved. In: Delgado J (ed) New approaches to building pathology and durability. Building pathology and rehabilitation, vol 6. Springer, Singapore

    Google Scholar 

  38. Khanlar GR, Naseri F (2016) Investigation of physical deterioration of Malayer granitic rocks using a new weathering coefficient (Kr4). Environ Earth Sci 75:414. https://doi.org/10.1007/s12665-015-5046-7

    Article  Google Scholar 

  39. La Russa MF, Ruffolo SA, Belfiore CM, Aloise P, Randazzo L, Rovella N, Pezzino A, Montana G (2013) Study of the effects of salt crystallization on degradation of limestone rocks. Periodico Mineral 82(1):113–127. https://doi.org/10.2451/2013PM0007

    Google Scholar 

  40. La Russa MF, Ruffolo SA, Álvarez de Buergo M, Ricca M, Belfiore CM, Pezzino A, Crisci GM (2017) The behaviour of consolidated Neapolitan yellow Tuff against salt weathering. Bull Eng Geol Environ 76:115. https://doi.org/10.1007/s10064-016-0874-6

    Article  Google Scholar 

  41. Laycock EA, Spence K, Jefferson DP, Hetherington S, Martin B, Wood C (2008) Testing the durability of limestone for Cathedral façade restoration. Environ Geol 56(3–4):521–528

    Article  Google Scholar 

  42. Liu Z, Deng D, De Schutter G (2014) Does concrete suffer sulfate salt weathering? Constr Build Mater 66:692–701. https://doi.org/10.1016/j.conbuildmat.2014.06.011

    Article  Google Scholar 

  43. López Doncel RA, Wedekind W, Cardona-Velázquez N, González-Sámano PS, Dohrmann R, Siegesmund S, Pötzl C (2016) Geological studies on volcanic tuffs used as natural building stones in the Historical Center of San Luis Potosí, Mexico. In: Hughes JJ, Howind T (eds) Science and art: a future for stone. Proceedings of the 13th international congress on the deterioration and conservation of stone, pp 107–105. University of the West of Scotland, Paisley

    Google Scholar 

  44. López-Arce P, Varas-Muriel MJ, Fernández-Revuelta B, Álvarez de Buergo M, Fort R, Pérez-Soba C (2010) Artificial weathering of Spanish granites subjected to salt crystallization tests: surface roughness quantification. Catena 83(2–3):170–185. https://doi.org/10.1016/j.catena.2010.08.009

    Article  Google Scholar 

  45. López-Arce P, Fort R, Gómez-Heras M, Pérez-Monserrat E, Varas-Muriel MJ (2011) Preservation strategies for avoidance of salt crystallisation in El Paular Monastery Cloister, Madrid, Spain. Environ Earth Sci 63:1487–1509. https://doi.org/10.1007/s12665-010-0733-x

    Article  Google Scholar 

  46. Ludovico-Marques M, Chastre C (2012) Effect of salt crystallization ageing on the compressive behavior of sandstone blocks in historical buildings. Eng Fail Anal 26:247–257. https://doi.org/10.1016/j.engfailanal.2012.08.001

    Article  Google Scholar 

  47. Mielke P, Weinert S, Bignall G, Sass I (2016) Thermo-physical rock properties of greywacke basement rock and intrusive lavas from the Taupo Volcanic Zone, New Zealand. J Volcanol Geoth Res 324:179–189. https://doi.org/10.1016/j.jvolgeores.2016.06.002

    Article  Google Scholar 

  48. Molina E, Cultrone G, Sebastián E, Alonso FJ, Carrizo L, Gisbert J, Buj O (2011) The pore system of sedimentary rocks as a key factor in the durability of building materials. Eng Geol 118:110–121. https://doi.org/10.1016/j.enggeo.2011.01.008

    Article  Google Scholar 

  49. Molina E, Benavente D, Sebastian E, Cultrone G (2015) The influence of rock fabric in the durability of two sandstones used in the Andalusian Architectural Heritage (Montoro and Ronda, Spain). Eng Geol 197:67–81. https://doi.org/10.1016/j.enggeo.2015.08.009

    Article  Google Scholar 

  50. Momeni A, Hashemi SS, Khanlari GR, Heidari M (2017) The effect of weathering on durability and deformability properties of granitoid rocks. Bull Eng Geol Environ 76:1037. https://doi.org/10.1007/s10064-016-0999-7

    Article  Google Scholar 

  51. Morales Demarco M, Oyhantçabal P, Stein K-J, Siegesmund S (2011) Black dimensional stones: geology, technical properties and deposit characterization of the dolerites from Uruguay. Environ Earth Sci 63(7–8):1879–1909. https://doi.org/10.1007/s12665-010-0827-5

    Article  Google Scholar 

  52. Morales Demarco M, Oyhantçabal P, Stein K-J, Siegesmund S (2013) Granitic dimensional stones in Uruguay: evaluation and assessment of potential resources. Environ Earth Sci 69(4):1397–1438. https://doi.org/10.1007/s12665-012-2027-y

    Article  Google Scholar 

  53. Moreno F, Vilela SAG, Antunes ASG, Alves CAS (2006) Capillary-rising salt pollution and granitic stone erosive decay in the Parish Church of Torre de Moncorvo (NE Portugal)—implications for conservation strategy. J Cult Heritage 7:56–66. https://doi.org/10.1016/j.culher.2005.10.006

    Article  Google Scholar 

  54. Mosch S, Siegesmund S (2007) Statistische Bewertung gesteintechnischer Kenndaten von Natursteinen. Z Dtsch Ges Geowiss 158(4):821–868

    Google Scholar 

  55. Mosquera MJ, Rivas T, Prieto B, Silva B (2000) Capillary rise in granitic rocks: interpretation of kinetics on the basis of pore structure. J Colloid Interface Sci 222:41–45. https://doi.org/10.1006/jcis1999.6612

    Article  Google Scholar 

  56. Pazeto AA, Amaral PM, Pinheiro JR, Paraguassú AB (2017) Effects of glass fiber-reinforcement on the mechanical properties of coarse grained building stone. Constr Build Mater 155:79–87. https://doi.org/10.1016/j.conbuildmat.2017.08.063

    Article  Google Scholar 

  57. Pérez-Fortes AP, Varas-Muriel MJ, Castiñeiras P (2017) Using petrographic techniques to evaluate the induced effects of NaCl, extreme climatic conditions, and traffic load on Spanish road surfaces. Mater Constr 67(328):e138. https://doi.org/10.3989/mc.2017.07516

    Article  Google Scholar 

  58. Prieto B, Silva B (2005) Estimation of the potential bioreceptivity of granitic rocks from their intrinsic properties International. Biodeterior Biodegrad 56:206–215. https://doi.org/10.1016/j.ibiod.2005.08.001

    Article  Google Scholar 

  59. Rivas T, Prieto B, Silva B (2000) Influence of rift and bedding plane on the physico-mechanical properties of granitic rocks. Implications for the deterioration of granitic monuments. Build Environ 35:387–396

    Article  Google Scholar 

  60. Rivas T, Alvarez E, Mosquera MJ, Alejano L, Taboada J (2010) Crystallization modifiers applied in granite desalination: the role of the stone pore structure. Constr Build Mater 24:766–776. https://doi.org/10.1016/j.conbuildmat.2009.10.031

    Article  Google Scholar 

  61. Ruedrich J, Siegesmund S (2007) Salt and ice crystallisation in porous sandstones. Environ Geol 52(2):225–249

    Article  Google Scholar 

  62. Saidov TA, Pel L, Kopinga K (2016) Sodium sulfate salt weathering of porous building materials studied by NMR. Mater Struct 50:145. https://doi.org/10.1617/s11527-017-1007-9

    Article  Google Scholar 

  63. Sammaljärvi J, Lindberg A, Voutilainen M, Ikonen J, Siitari-Kauppi M, Pitkänen P, Koskinen L (2017) Multi-scale study of the mineral porosity of veined gneiss and pegmatitic granite from Olkiluoto, western Finland. J Radioanal Nucl Chem 314(3):1557–1575. https://doi.org/10.1007/s10967-017-5530-5

    Article  Google Scholar 

  64. Schild M, Siegesmund S, Vollbrecht A, Mazurek M (2001) Characterization of granite matrix porosity and pore-space geometry by in situ and laboratory methods. Geophys J Int 146(1):111–125

    Article  Google Scholar 

  65. Siegesmund S, Grimm WD, Dürrast H, Ruedrich J (2010) Limestones in Germany used as building stones: an overview. Geol Soc Lond Special Publ 331(1):37–59

    Article  Google Scholar 

  66. Sousa LMO (2014) Petrophysical properties and durability of granites employed as building stone: a comprehensive evaluation. Bull Eng Geol Environ 73(2):569–588. https://doi.org/10.1007/s10064-013-0553-9

    Article  Google Scholar 

  67. Sousa L, Barabasch J, Stein K-J, Siegesmund S (2017) Characterization and quality assessment of granitic building stone deposits: a case study of two different Portuguese granites. Eng Geol 221:29–40. https://doi.org/10.1016/j.enggeo.2017.01.030

    Article  Google Scholar 

  68. Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12(1):1–33

    Article  Google Scholar 

  69. Stück H, Plagge R, Siegesmund S (2013) Numerical modeling of moisture transport in sandstone: the influence of pore space, fabric and clay content. Environ Earth Sci 69(4):1161–1187. https://doi.org/10.1007/s12665-013-2405-0

    Article  Google Scholar 

  70. Theoulakis P, Moropoulou A (1997) Microstructural and mechanical parameters determining the susceptibility of porous building stones to salt decay. Constr Build Mater 11(1):65–71

    Article  Google Scholar 

  71. Thomachot-Schneider C, Gommeaux M, Fronteau G (2008) Modifications of the porous network of sandstone accompanying the formation of black varnish. Environ Geol 56:571–582. https://doi.org/10.1007/s00254-008-1443-5

    Article  Google Scholar 

  72. Thomachot-Schneider C, Gommeaux M, Lelarge N, Conreux A, Mouhoubi K, Bodnar J-L, Vázquez P (2016) Relationship between Na2SO4 concentration and thermal response of reconstituted stone in the laboratory and on site. Environ Earth Sci 75:762. https://doi.org/10.1007/s12665-016-5388-9

    Article  Google Scholar 

  73. Torkan M, Irannezhadi MR, Baghbanan AR (2016) Alteration dependent physical–mechanical properties of quartz-diorite building stones. Int J Min Geoeng 50(2):195–200. https://doi.org/10.22059/ijmge.2016.59829

    Google Scholar 

  74. Török A, Czinder B (2017) Relationship between density, compressive strength, tensile strength and aggregate properties of andesites from Hungary. Environ Earth Sci 76:639. https://doi.org/10.1007/s12665-017-6977-y

    Article  Google Scholar 

  75. Tuğrul A (2004) The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey. Eng Geol 75:215–227. https://doi.org/10.1016/j.enggeo.2004.05.008

    Article  Google Scholar 

  76. Tullborg EL, Larson SA (2006) Porosity in crystalline rocks—a matter of scale. Eng Geol 84:75–83

    Article  Google Scholar 

  77. Unterwurzacher M, Mirwald PW (2008) Initial stages of carbonate weathering: climate chamber studies under realistic pollution conditions. Environ Geol 56:507–519. https://doi.org/10.1007/s00254-008-1440-8

    Article  Google Scholar 

  78. Lubelli B, van Hees RPJ, Nijland TG (2014) Salt crystallization damage: how realistic are existing ageing tests? In van Breugel K, Koenders EAB (eds) Proceedings of the international conference on ageing of materials and structures, Delft, pp 103–111

  79. Vázquez P, Alonso FJ, Esbert RM, Ordaz J (2010) Ornamental granites: relationships between p-waves velocity, water capillary absorption and the crack network. Constr Build Mater 24:2536–2541. https://doi.org/10.1016/j.conbuildmat.2010.06.002

    Article  Google Scholar 

  80. Vázquez P, Luque A, Alonso FJ, Grossi CM (2013) Surface changes on crystalline stones due to salt crystallisation. Environ Earth Sci 69(4):1237–1248. https://doi.org/10.1007/s12665-012-2003-6

    Article  Google Scholar 

  81. Vázquez P, Acuña M, Benavente D, Gibeaux S, Navarro I, Gomez-Heras M (2016) Evolution of surface properties of ornamental granitoids exposed to high temperatures. Constr Build Mater 104:263–275. https://doi.org/10.1016/j.conbuildmat.2015.12.051

    Article  Google Scholar 

  82. Vázquez-Nion D, Silva B, Prieto B (2018) Influence of the properties of granitic rocks on their bioreceptivity to subaerial phototrophic biofilms. Sci Total Environ 610–611:44–54. https://doi.org/10.1016/j.scitotenv.2017.08.015

    Article  Google Scholar 

  83. Viles HA (2013) Durability and conservation of stone: coping with complexity. Q J Eng Geol Hydrogeol 46:367–375. https://doi.org/10.1144/qjegh2012-053

    Article  Google Scholar 

  84. von Moss A, De Quervain F (1948) Technische Gesteinskunde. Birkhäuser, Basel

    Book  Google Scholar 

  85. Warke PA, Smith BJ, Lehane E (2011) Micro-environmental change as a trigger for granite decay in offshore Irish lighthouses: implications for the long-term preservation of operational historic buildings. Environ Earth Sci 63:1415–1431. https://doi.org/10.1007/s12665-010-0662-8

    Article  Google Scholar 

  86. Wedekind W, López-Doncel R, Dohrmann R, Kocher M, Siegesmund S (2013) Weathering of volcanic tuff rocks caused by moisture expansion. Environ Earth Sci 69:1203–1224. https://doi.org/10.1007/s12665-012-2158-1

    Article  Google Scholar 

  87. Wilhelm K, Viles H, Burke Ò (2016) The influence of salt on handheld electrical moisture meters: can they be used to detect salt problems in porous stone? Int J Architectural Heritage 10(6):735–748. https://doi.org/10.1080/15583058.2015.1109733

    Article  Google Scholar 

  88. Winkler EM (1973) Stone: properties, durability in man’s environment. Springer, Berlin

    Book  Google Scholar 

  89. Yu S, Oguchi CT (2010) Role of pore size distribution in salt uptake, damage, and predicting salt susceptibility of eight types of Japanese building stones. Eng Geol 115:226–236. https://doi.org/10.1016/j.enggeo.2009.05.007

    Article  Google Scholar 

  90. Zedef V, Unal M (2010) Effect of salt crystallization on the building stones used in Konya, central Turkey. Int J Econ Environ Geol 1(1):51–52

    Google Scholar 

  91. Sawdy-Heritage AM, Heritage A, Pel L (2008) A review of salt transport in porous media: assessment methods and salt reduction treatments. In Salt weathering on buildings and stone sculptures (SWBSS), 22–24 October 2008, Copenhagen, Denmark

  92. Leite ALFC (2008) Estudo da deterioração da pedra na Igreja de Santa Clara em Vila do Conde. Master Thesis, Engineering Faculty, University of Porto

  93. Klopfer H (1985) Feuchte. In: Lutz et al (eds) Lehrbuch der Bauphysik. Teubner, Stuttgart

  94. Jamshidi A, Zamanian H, Sahamieh RZ (in press) The effect of density and porosity on the correlation between uniaxial compressive strength and P-wave velocity. Rock Mech Rock Eng (accepted). https://doi.org/10.1007/s00603-0171379-8

  95. Vázquez P, Esbert RM, Alonso FJ, et Ordaz J (2008) Evaluation of damage induced by salt crystallization in granitic building stones. In: 11th International congress on deterioration and conservation of Stone Torún, vol I, pp 325–331

  96. Hoffmann A (2007) Naturwerksteine Thailands: Lagerstättenerkundung und Bewertung. http:// webdoc.sub.gwdg.de/diss/2007/hoffmann/hoffmann.pdf. Accessed 19 Dec 2017

  97. Henriques AME, Tello JSMN (2006) Manual da pedra natural para a arquitetura. Direcção Geral da Geologia e Energia. ISBN 989-95163-0-9

  98. Fojo ACOT (2006) Estudo da aplicação de consolidantes e hidrófugos em pedras graníticas da Igreja Matriz de Caminha. Master Thesis, Engineering Faculty, University of Porto

  99. Ferreira JMLC (2011) Degradação da pedra provocada por sais em edifícios antigos. Master Thesis, Engineering Faculty, University of Porto

  100. Vicente MA (1996) Final report 1991–1994—Project STEP-CT-0101—granitic materials and historical monuments: study of the factors and mechanisms of weathering and application to historical heritage conservation. In: Vicente MA, Rodrigues JD, Acevedo J (eds) Proceedings of the European Commission workshop degradation and conservation of granitic rocks in monuments, Santiago de Compostela. Protection and conservation of European cultural heritage, research report nº 5, pp 1–44

  101. Espinosa-Marzal RM, Scherer GW (2010) Mechanisms of damage by salt. Geological Society, London, Special Publications, vol 331, pp 61–77. https://doi.org/10.1144/SP331.5

  102. Doehne E (2002) Salt weathering: a selective revue. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Geological Society of London, Special Publications vol 205, pp 51–64

  103. Begonha A, Jeannette D, Hammecker C, Braga MAS (1994) Physical characteristics of the Oporto granite related to stone decay in monuments. In: Fassina V, Ott H, Zezza F (eds) Proc. 3° Simposio Internazionale La Conservazione dei Monumenti nel Bacino del Mediterraneo – Venezia, pp 541–546

  104. Barroso CE, Oliveira DV, Ramos LF (in press) Vernacular schist farm walls: materials, construction techniques and sustainable rebuilding solutions. J Build Eng (accepted). https://doi.org/10.1016/j.jobe.2017.12.001

  105. Antão A, Quinta-Ferreira M (2015) Weathering influence on physical properties of the Guarda granite, Portugal. In: Proceedings of the 15th international SGEM geoconference on science and technologies in geology, exploration and mining. https://doi.org/10.5593/SGEM2015/B12/S2.115

  106. Alencar CRA (2013) Manual de caracterização, aplicação, uso e manutenção das principais rochas comerciais no Espírito Santo: rochas ornamentais. Instituto Euvaldo Lodi - Regional do Espírito Santo, Cachoeiro de Itapemirim

  107. LNEC (1990a) Estudos relativos à alteração e conservação do granito do claustro do Mosteiro de Grijó, em Vila Nova de Gaia. Relatório 243/90-GERO/NQ, Lisboa

  108. Ruedrich J, Sigesmund S (2006) Fabric dependence of length change behaviour induced by ice crystallization in the pore space of natural building stones. In: Fort A, Alvarez de Buergo M, Gomez-Heras M et al (eds) Heritage, weathering and conservation. Taylor and Francis Group, London

  109. LNEC (1990b) Estudo relativo à acção dos pombos sobre a pedra das igrejas do Carmo e dos Carmelitas, no Porto, e de São Gonçalo, em Amarante. Relatório 243/9-GERO/NQ, Lisboa

  110. Martins ML, Vasconcelos G, Lourenço PB, Palha C (2016) Influence of the salt crystallization in the durability of granites used in vernacular masonry buildings. In: Modena C, da Porto F, Valluzzi MR (eds) Brick and block masonry—trends, innovations and challenges. Taylor and Francis Group, London, pp 517–524. ISBN 978-1-138-02999-6

  111. Ribeiro CMM (2013) Avaliação do desempenho de revestimentos superficiais na durabilidade de pedra de construção. Master Thesis, Engineering Scholl, University of Minho

  112. Sengun N, Demirdag S, Akbay D, Ugur I, Altindag R, Akbulut A (2014) Investigation of the relationships between capillary water absorption coefficients and other rock properties of some natural stones, V. In: Global stone congress, 22–25 October 2014, Antalya/Türkiye

  113. Shahidzadeh N, Desarnaud J, Bonn D (2016) Direct measurement of salt crystallization pressure at the pore scale. In: Hughes J, Howind T (eds) Science and art: a future for stone: proceedings of the 13th international congress on the deterioration and conservation of stone, vol 1. University of the West of Scotland, Paisley, pp. 467–474

  114. Siedel H, Siegesmund S (2014) Characterization of stone deterioration on buildings. In: Siegesmund S, Snethlage R (eds) Stone in architecture. Properties, durability, 5th edn. Springer

  115. Siegesmund S, Dürrast H (2014) Physical and mechanical properties of the rocks. In: Siegesmund S, Snethlage R (eds) Stone in architecture. Properties, durability, 5th edn. Springer

  116. Poschlod K (1990) Das Wasser im Porenraum kristalliner Naturwerksteine und sein Einfluß auf die Verwitterung. Münchner Geowissenschaftliche Abhandlungen Reihe B Allgemeine und Angewandte Geologie

  117. Silva AC (2012) Estudo diagnóstico, cartografia e proposta de tratamento das deteriorações do granito do Hospital da Santa Casa da Misericórdia de Viana do Castelo. Master Thesis, Engineering Faculty, University of Porto

  118. Pinto APF, Rodrigues JD, Costa DR (1994) Assessment of the efficacy and harmfulness of water repellents in granite. In: Fassina V, Ott H, Zezza F (eds) Proc. 3° Simposio Internazionale La Conservazione dei Monumenti nel Bacino del Mediterraneo, Venezia, pp 883–889

  119. Pérez-Ortiz A, Ordaz J, Esbert RM, Alonso FJ, Días-Pache F (1996) Physical behaviour degradation trends in an anisotropic granite. In: Riederer J (ed) Proceedings of the 8th international congress on deterioration and conservation of stone, Berlin, pp 205–209

  120. Steiger M, Charola AE, Sterflinger K (2014) Weathering and deterioration. In: Siegesmund S, Snethlage R (eds) Stone in architecture. Properties, durability, 5th edn. Springer

  121. Mosch S (2009) Optimierung der Exploration, Gewinnung und Materialcharakterisierung von Naturwerksteinen. http:// webdoc.sub.gwdg.de/diss/2009/mosch/mosch.pdf. Accessed 19 Dec 2017

  122. Strohmeyer D (2003) Gefügeabhängigkeit technischer Gesteinseigenschaften. Dissertation zur Erlangung des Doktorgrades Mathematisch-Naturwissenschaftliche Fakultäten der Georg-August-Universität zu Göttingen

  123. Stu E, Eggers T, Cassar J, Ruedrich J, Fitzner B, Siegesmund S (2007) Stone properties and weathering induced by salt crystallization of Maltese Globigerina Limestone. In: Přikryl R, Smith BJ (eds) Building stone decay: from diagnosis to conservation. Geological Society, London, Special Publications 271:189–198

  124. Morales Demarco M (2012) Mineralogical, petrophysical and economical characterization of the dimensional stones of Uruguay; implications for deposit exploration. PhD Thesis, University of Gottingen

  125. Mendes PIP (2013) Estudos sobre a Igreja de São Domingos em Viana do Castelo: bases para intervenção de conservação exterior. Master Thesis, University of Trás-os-Montes e Alto Douro

  126. LNEC (1990c) Estudo relativo à alteração e conservação do granito da Torre dos Clérigos, no Porto. Relatório 243/9-GERO/NQ, Lisboa

  127. MacWilliam K (2017) Aging tests to assess the durability of building materials to salt crystallization—towards a more realistic and effective use of sodium sulfate. MSc Dissertation, Czech Technical University, Prague

Download references

Acknowledgements

This work was supported by the DAAD (Az. 57213019) and CRUP (Project A-50/16). The authors gratefully acknowledge Amanda Ricardo and Christopher Pötzl for their help in the laboratory work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luís Sousa.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Stone in the Architectural Heritage: from quarry to monuments – environment, exploitation, properties and durability”, guest edited by Siegfried Siegesmund, Luís Sousa, and Rubén Alfonso López-Doncel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sousa, L., Siegesmund, S. & Wedekind, W. Salt weathering in granitoids: an overview on the controlling factors. Environ Earth Sci 77, 502 (2018). https://doi.org/10.1007/s12665-018-7669-y

Download citation

Keywords

  • Salt weathering
  • Granite
  • Pore radii distribution