Advertisement

The paradigm of Circular Mining in the world: the Iberian Pyrite Belt as a potential scenario of interaction

  • J. A. Grande
  • M. Santisteban
  • M. L. de la Torre
  • J. C. Fortes
  • E. de Miguel
  • J. Curiel
  • J. M. Dávila
  • B. Biosca
Original Article
  • 88 Downloads

Abstract

Water is one of the receptors most affected by the impacts caused, especially in the case of mining sulphides and, to a lesser extent, of coal. Acid Mine Drainage (AMD) is the main problem associated with these mining operations, producing extremely high impacts, and in many cases irreversible impacts, until now. A new concept of mining can make this activity compatible with the environmental preservation and also to the recovery of the environment affected by the old mining operations that today are in the process of reopening. This new concept implicates the paradigm of Circular Mining as a derivative of the concept of Circular Economy, considered as a strategy that aims to reduce both the entry of materials and the production of virgin waste, closing the “loops” or economic and ecological flows of resources. The present work discusses the paradigm of Circular Mining, focused on the Iberian Pyrite Belt, one of the most paradigmatic metallogenetic regions in the world. Based on some examples, expeditious calculations show the possibility of recovering base metals as well as strategic elements from acid mine drainage, thus obtaining important economic assets.

Keywords

Acid mine drainage Circular Mining Sustainability Environmental liabilities 

References

  1. de la Torre ML, Grande JA, Santisteban M, Valente T, Borrego J, Salguero F (2013) Statistical contrast analysis of hydrochemical parameters upstream of the tidal influence in two AMD-affected rivers. Mine Water Environ.  https://doi.org/10.1007/s10230-013-0258-0
  2. de la Torre ML, Grande JA, Valente T, Santisteban M, Pérez-Ostalé, Aroba J (2016) Statistical determination of the transit speed of pollutants in a water reservoir affected by acid mine drainage of the Iberian Pyrite Belt. Mine Water Environ.  https://doi.org/10.1007/s10230-016-0390-8 Google Scholar
  3. Geissdoerfer M, Savaget P, Bocken N, Hultink E (2017) The circular economy—a new sustainability paradigm? J Clean Prod 143:757–768CrossRefGoogle Scholar
  4. Grande JA, Beltrán R, Sáinz A, Santos JC, de la Torre ML, Borrego J (2005) Acid mine drainage and acid rock drainage processes in the environment of Herrerías Mine (Iberian Pyrite Belt, Huelva, Spain) and impact on the Andévalo Dam. Environ Geol 47(2):185–196CrossRefGoogle Scholar
  5. Grande JA, de la Torre ML, Cerón JC, Beltrán R, Gómez T (2010) Overall hydrochemical characterization of the Iberian Pyrite Belt Main acid mine drainage generating sources (Huelva, SW Spain). J Hydrol 390:123–130CrossRefGoogle Scholar
  6. Grande JA, Valente T, de la Torre ML, Santisteban M, Cerón JC, Perez-Ostalé E (2013) Characterization of acid mine drainage sources in the Iberian Pyrite Belt: base methodology for quantifying affected areas and for environmental management. Environ Earth Sci.  https://doi.org/10.1007/s12665-013-2652-0 Google Scholar
  7. Grande JA, de la Torre ML, Valente T, Fernández JP, Borrego J, Santisteban M, Cerón JC, Sánchez-Rodas D (2014) Stratification of metal and sulphate loads in acid mine drainage Receiving water dams variables regionalization by cluster analysis water environment research. In pressGoogle Scholar
  8. Grande JA, de la Torre ML, Santisteban M, Valente T, Fernández J, Pérez-Ostalé E (2015) Spatial evolution of an AMD stream in the Iberian Pyrite Belt: process characterization and control factors on the hydrochemistry. Hydrol Sci J.  https://doi.org/10.1080/02626667.2014.983515 Google Scholar
  9. Grande JA, Valente T, Santisteban M, de la Torre ML, Zouiten C, Viers J, Masbou J, Freydier R, Seyler P (2017) Functional model of a sulfide waste dump during torrential rain: temporal evolution of acid mine drainage in the receiving watercourse. Water Air Soil Pollut. In PressGoogle Scholar
  10. Jiménez A, Aroba J, de la Torre ML, Andújar JM, Grande JA (2009) Model of behaviour of conductivity versus pH in acid mine drainage water, based on fuzzy logic and data mining techniques. J Hydroinf 11(2):147–153CrossRefGoogle Scholar
  11. Nebel BJ, Wrigth RT (1999) Environmental sciences: The way the world works. Prentice Hall, USAGoogle Scholar
  12. Pearce DW, Turner RK (1990) Economics of natural resources and the environment. Johns Hopkins Press, BaltimoreGoogle Scholar
  13. Sáinz A, Grande JA, de la Torre ML, Sánchez-Rodas D (2002) Characterisation of sequential leachate discharges of mining waste rock dumps in the Tinto and Odiel rivers. J Environ Manage 64(4):345–353CrossRefGoogle Scholar
  14. Sáinz A, Grande JA, de la Torre ML (2003) Odiel river, acid mine drainage and current characterisation by means of univariate analysis. Environ Int 29:51–59CrossRefGoogle Scholar
  15. Sánchez-España FJ, Lopez Pamo E, Santofimia E, Aduvire O, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain):geochemistry, mineralogy and environmental implications. Appl Geochem 20:1320–1356CrossRefGoogle Scholar
  16. Santisteban M, Grande JA, de La Torre ML, Valente T, Perez-Ostalé E, Garcia-Pérez M (2016) Study of the transit and attenuation of pollutants in a water reservoir receiving acid mine drainage in the Iberian pyrite belt (SW Spain). Water Sci Technol.  https://doi.org/10.2166/ws2015122 Google Scholar
  17. Winans K, Kendall A, Deng H (2017) The history and current applications of the circular economy concept. Renew Sustain Energy Rev 68:825–833Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • J. A. Grande
    • 1
  • M. Santisteban
    • 1
  • M. L. de la Torre
    • 1
  • J. C. Fortes
    • 1
  • E. de Miguel
    • 2
  • J. Curiel
    • 2
  • J. M. Dávila
    • 1
  • B. Biosca
    • 3
  1. 1.Escuela Técnica Superior de IngenieríaUniversidad de HuelvaPalos de la FronteraSpain
  2. 2.Laboratorio de Investigación e Ingeniería Geoquímica Ambiental (LI2GA)Universidad politécnica de MadridMadridSpain
  3. 3.Department of Geological and Mining Engineering, School of Mines and EnergyUniversidad Politécnica de MadridMadridSpain

Personalised recommendations