Toxic metals in a highly urbanized industry-impacted estuary (Bahia Blanca Estuary, Argentina): spatio-temporal analysis based on GIS

  • Melisa Daiana Fernández Severini
  • María Elizabeth Carbone
  • Diana Mariel Villagran
  • Jorge Eduardo Marcovecchio
Thematic Issue
  • 19 Downloads

Abstract

Cadmium, chromium, nickel, and lead were evaluated in the particulate fraction at one of the most industrialized estuaries at the Southwestern Atlantic Ocean, through Geographic Information System (GIS). Concentrations were analyzed at 21 stations during 2008–2010. The highest metal concentrations (Cd: 8,9; Cr: 256,49; Ni: 27,02; Pb: 78,43 µg g− 1 d. w.) were recorded at the stations located near industrial and urban discharges situated along the estuary. In addition, Pb presented a different seasonal and spatial behavior in comparison with Cd, Cr and Ni. Winter and spring presented the higher concentrations of Pb, and the inner stations presented the higher values. The estuary is considered a moderate to strongly polluted and significantly polluted according to the Index of geoaccumulation (Igeo) and the Enrichment Factor of Cd, respectively. The Multidimensional Scaling plot showed three groups of stations: the inner, associated to low levels of metals (G1), middle stations (G2) with intermediate levels and the outer (G3) with the highest ones. In addition, this work reveals the usefulness of the GIS-mapping techniques in the distribution of pollutants along an estuarine environment and the environmental quality assessment of estuarine systems.

Keywords

Heavy metals Suspended particulate matter GIS Pollution Estuary 

Notes

Acknowledgements

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica, Argentina (ANPCyT, Préstamo BID, PICT 2006, No 945) granted to JEM. We thank RO Asteasuain and MN Chiarello for the valuable assistance in the field and laboratory work.

References

  1. Ajmal M, Khun MA, Normani AA (1984) Effects of industrial dairy effluent on soil and crop plants. Environ Pollut Ser A 33:97–106CrossRefGoogle Scholar
  2. American Public Health Association (APHA) (1998) Standard methods for the examination of water and waste water. American Public Health Association Thomas QuadeGoogle Scholar
  3. Andrade S (2001) Metales Pesados en el Agua de la Zona Interna de Bahía Blanca, y Su Toxicidad Sobre Algunas Especies Fitoplanctónicas. Bahía Blanca, Argentina: Universidad Nacional del Sur, Ph D dissertation, pp 244Google Scholar
  4. Arias AH, Vazquez-Botello A, Tombesi N, Ponce-Vélez G, Freije RH, Marcovecchio JE (2010) Presence, distribution, and origins of polycyclic aromatic hydrocarbons (PAHs) in sediments from Bahía Blanca Estuary, Argentina. Environ Monit Assess 160:301–314CrossRefGoogle Scholar
  5. Balls PW (1989) The partition of trace metals between dissolved and particulate phases in European coastal waters: A compilation of field data and comparison with laboratories studies. Neth J Sea Res 23:7–14CrossRefGoogle Scholar
  6. Bilos C, Colombo JC, Rodriguez Presa MJ (1998) Trace metals in suspended particles, sediments and Asiatic clams (Corbicula fluminea) of the Río de la Plata Estuary, Argentina. Environ Pollut 99:1–11CrossRefGoogle Scholar
  7. Botté SE (2004) El Rol de la Vegetación en el Ciclo Biogeoquímico de los Metales Pesados en Humedales del Estuario de Bahía Blanca. Bahía Blanca, Argentina: Universidad Nacional del Sur, PhD dissertation, pp 317Google Scholar
  8. Buchman MF, Seattle WA (1999) NOAA Screening Quick Reference Tables, NOAA HAZMAT Report 99–1, Coastal Protection and Restoration Division, National Oceanic and Atmospheric AdministrationGoogle Scholar
  9. Carbone ME, Spetter CV, Marcovecchio JE (2016) Seasonal and spatial variability of macronutrients and Chlorophyll a based on GIS in the South American estuary (Bahía Blanca, Argentina). Environ Earth Sci 75:735–748CrossRefGoogle Scholar
  10. Craig PJ (1986) Chemical Species in Industrial Discharges and Effluents. In: Bernhard M, Brinckman FE, Sadler PJ (eds) The importance of chemical “Speciation” in environmental processes. dahlem workshop reports (Life Sciences Research Report), vol 33. Springer, Berlin, pp 443–464Google Scholar
  11. Cuadrado DG, Gómez EA, Ginsberg SS (2005) Tidal and longshore sediment transport associated to a coastal structure. Estuar Coast Shelf Sci 62:291–300CrossRefGoogle Scholar
  12. de Jonge VN (1995) Wind driven tidal and annual gross transports of mud and microphytobenthos in the Ems estuary, and its importance for the ecosystem. In: Dyer KR, D’Elia CF (eds) Changes in fluxes in estuaries, pp 29–40Google Scholar
  13. de Souza Machado AA, Spencer K, Kloas W, Toffolon M, Zarf C (2016) Metal fate and effects in estuaries: A review and conceptual model for better understanding of toxicity. Sci Total Environ 541:268–281CrossRefGoogle Scholar
  14. Delgado J, Nieto JM, Boski T (2010) Analysis of the spatial variation of heavy metals in the Guadiana Estuary sediments (SW Iberian Peninsula) based on GIS-mapping techniques. Estuar Coast Shelf Sci 88:71–83CrossRefGoogle Scholar
  15. Demirak A, Yılmaz HA, Keskin F, Sahin Y, Akpolat O (2012) Investigation of heavy metal content in the suspended particulate matter and sediments of inner Gokova Bay and creeks. Environ Monit Assess 184:7113–7124CrossRefGoogle Scholar
  16. Dreiss SJ (1986) Chromium migration through sludge-treated soils. Groundw 24(3):312–321CrossRefGoogle Scholar
  17. Duarte B, Caçador I (2012) Particulate metal distribution in Tagus estuary (Portugal) during a flood episode. Mar Pollut Bull 64:2109–2116CrossRefGoogle Scholar
  18. Edwards JW, Edyvane KS, Boxall VA, Hamann M, Soole KL (2001) Metal levels in Seston and Marine fish flesh near industrial and metropolitan centers in South Australia. Mar Pollut Bull 42(5):389–396CrossRefGoogle Scholar
  19. Federal Register (1984) Definition and procedure for determination of the method detection limit. Washington, DC: U.S. Environmental Protection Agency, EPA, 40 CFR Part 136, Appendix B, Revision. 1.11 1, 11, pp 2Google Scholar
  20. Fernández-Severini MD, Botté SE, Hoffmeyer MS, Marcovecchio JE (2009) Spatial and temporal distribution of cadmium and copper in water and zooplankton in the Bahía Blanca estuary, Argentina. Estuar Coast Shelf Sci 85:57–66CrossRefGoogle Scholar
  21. Fernández-Severini MD, Hoffmeyer MS, Marcovecchio JE (2013) Heavy metals concentrations in zooplankton and suspended particulate matter in a southwestern Atlantic temperate estuary (Argentina). Environ Monit Assess 185:1495–1513CrossRefGoogle Scholar
  22. Fernández-Severini MD, Villagran DM, Biancalana F, Berasategui AA, Spetter CV, Tartara MN, Menéndez MC, Guinder VA, Marcovecchio JE (2017) Heavy metal concentrations found in seston and microplankton from an impacted temperate shallow estuary along the Southwestern Atlantic Ocean. J Coast Res 33(5):1196–1209CrossRefGoogle Scholar
  23. Forstner U, Ahlf W, Calmano W, Kersten M (1990) Sediments criteria development. In: Heling D, Rothe P, Förstner U, Stoffers P (eds) Sediments and environmental geochemistry. Springer, Berlin, pp 311–338CrossRefGoogle Scholar
  24. Freije RH, Marcovecchio JE (2004) Oceanografía Física. In: Piccolo MC, Hoffmeyer MS (eds) Ecosistema del estuario de Bahía Blanca. Instituto Argentino de Oceanografía, Bahía Blanca, Argentina, pp 69–77Google Scholar
  25. Freije RH, Spetter CV, Marcovecchio JE, Popovich CA, Botté SE, Negrín V, Arias A (2008) Water chemistry and nutrients in the Bahía Blanca Estuary. In: Neves R, Baretta J, Mateus M (eds) Perspectives on Integrated Coastal Zone Management in South America. IST Press, Lisbon, pp 243–256Google Scholar
  26. GESAMP (IMO/FAO/IJNESCO/WMO/IAEA/UN/IJNEP) (1982) The health of the oceans, Rep Stad GESAMP, 15Google Scholar
  27. Gibbs RJ (1994) Metals in the sediments along the Hudson River Estuary. Environ Int 20:507–516CrossRefGoogle Scholar
  28. Gómez V, Callao MP (2006) Chromium determination and speciation since 2000. Trends Anal Chem 25(10):1006–1015CrossRefGoogle Scholar
  29. Guinder VA, Popovich CA, Perillo GME (2009) Particulate suspended matter concentrations in the Bahía Blanca Estuary, Argentina: implication for the development of phytoplankton blooms. Est Coast Shelf Sci 85:157–165CrossRefGoogle Scholar
  30. Guinder VA, Popovich CA, Molinero JC, Perillo GME (2010) Long-term changes in the composition, occurrence, timing and magnitude of phytoplankton blooms in the Bahía Blanca Estuary, Argentina. Mar Biol 157:2703–2716CrossRefGoogle Scholar
  31. Guinder VA, Popovich CA, Molinero JC, Marcovecchio JE (2013) Phytoplankton summer bloom dynamics in the Bahía Blanca Estuary in relation to changing environmental conditions. Cont Shelf Res 52:150–158CrossRefGoogle Scholar
  32. Helali MA, Oueslati W, Zaaboub N, Added A, Abdeljaouad S (2013) Geochemistry of marine sediments in the Mejerda River delta, Tunisia. Chem Speciat Bioavailab 25(4):247–257CrossRefGoogle Scholar
  33. Helali MA, Oueslati W, Zaaboub N, Added A, Aleya L (2016) Chemical speciation of Fe, Mn, Pb, Zn, Cd, Cu, Co, Ni and Cr in the suspended particulate matter off the Mejerda River Delta (Gulf of Tunis, Tunisia). J Afr Earth Sci 118:35–44CrossRefGoogle Scholar
  34. IADO (2002) Instituto Argentino de Oceanografía—Universidad Nacional del Sur. Programa de Monitoreo de la Calidad Ambiental de la Zona Interior del Estuario de Bahía Blanca—Informe Final. (2002). Bahía Blanca, ArgentinaGoogle Scholar
  35. IADO (2006) Instituto Argentino de Oceanografía—Universidad Nacional del Sur. Programa de Monitoreo de la Calidad Ambiental de la Zona Interior del Estuario de Bahía Blanca—Informe Final. (2006). Bahía Blanca, ArgentinaGoogle Scholar
  36. IADO (2009) Instituto Argentino de Oceanografía—Universidad Nacional del Sur. Programa de Monitoreo de la Calidad Ambiental de la Zona Interior del Estuario de Bahía Blanca—Informe Final. (2009). Bahía Blanca, ArgentinaGoogle Scholar
  37. IAEA (1990) Guidebook on applications of radiotracers in industry. Technical Report Series, No. 316Google Scholar
  38. Johnson BB (1990) Effect of pH, temperature, and concentration on the adsorption of cadmium on goethite. Environ Sci Technol 24(1):112–118CrossRefGoogle Scholar
  39. Kehrig HA, Palermo EFA, Seixas TG, Branco CWC, Moreira I, Malm O (2009) Trophic transfer of methylmercury and trace elements by tropical estuarine seston and plankton. Estuar Coast Shelf Sci 85:36–44CrossRefGoogle Scholar
  40. Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283CrossRefGoogle Scholar
  41. La Colla NS, Negrin VL, Marcovecchio JE, Botté SE (2015) Dissolved and particulate metals dynamics in a human impacted estuary from the SW Atlantic. Estuar Coast Shelf Sci 166:45–55CrossRefGoogle Scholar
  42. Long R, Morgan LG (1990) The potential for biological effects of sediment-sorbed 452 contaminants tested in the national status and trends program. NOAA Tech Memo NOSOMA 52:8–60Google Scholar
  43. López Abbate MC, Molinero JC, Guinder VA, Dutto MS, Barría de Cao MS, Ruiz Etcheverry LA, Pettigrosso Rosa E, Carcedo C, Hoffmeyer MS (2015) Microplankton dynamics under heavy anthropogenic pressure. The case of the Bahía Blanca Estuary, southwestern Atlantic Ocean. Mar Pollut Bull 95(1):305–314CrossRefGoogle Scholar
  44. Loska K, Wiechula D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159–165CrossRefGoogle Scholar
  45. Mansour SA, Sidky MM (2002) Ecotoxicological Studies. 3. Heavy metals contaminating water and fish from Fayoum Governorate. Egypt Food Chem 78:15–22CrossRefGoogle Scholar
  46. Marcovecchio J, Botté S, FernándeSeverini M, Delucchi F (2009) Geochemical Control of Heavy Metal Concentrations and Distribution Within Bahía Blanca Estuary (Argentina). Aquat Geochem 16:251–266CrossRefGoogle Scholar
  47. Martin JM, Meybeck M (1979) Elemental mass-balance of material carried by major world rivers. Mar Chem 7:173–206CrossRefGoogle Scholar
  48. Morel FMM, Price NM (2003) The biogeochemical cycles of trace metals in the oceans. Science 300:944–947CrossRefGoogle Scholar
  49. Monteiro S, de M, Sá, Rodriguez-Neto F R (2017) Geochemistry of suspended particulate matter in a tropical estuarine system, Southeastern Brazil. Quím Nova 40(8):871–879Google Scholar
  50. Muller G (1969) Index of geo-accumulation in sediments of the Rhine River. Geo J 2(3):108–118Google Scholar
  51. Muyssen BTA, Brix KV, De Forest DK, Janssen CR (2004) Nickel essentiality and homeostasis in aquatic organisms. Environ Rev 12:113–131CrossRefGoogle Scholar
  52. Negrin VL, Spetter CV, Asteasuain RO, Perillo GME, Marcovecchio JE (2011) Influence of flooding and vegetation on carbon, nitrogen, and phosphorus dynamics in the pore water of a Spartina alterniflora salt marsh. J Environ Sci 23(2):212–221CrossRefGoogle Scholar
  53. Paulson AJ, Curl HC, Grendon JF (1994) Partitioning of Cu in estuarine water, I. Partitioning in poisoned system. Mar Chem 45:67–80CrossRefGoogle Scholar
  54. Payá Pérez AB, Götz L, Kephalopoulos SD, Bignoli G (1988) Sorption of chromium species on soil. In: Astruc M, Lester JN (eds) Heavy Metals in the Hydrocycle. Selper, London, pp 59–66Google Scholar
  55. Perillo GME, Piccolo MC (1991) Tidal response in the Bahía Blanca estuary, Argentina. J Coast Res 7:437–449Google Scholar
  56. Perillo GME, Piccolo MC, Palma ED, Pérez DE, Pierini JO (2004) Oceanografía Física. In: Piccolo MC, Hoffmeyer MS (eds). Ecosistema del Estuario de Bahía Blanca. EdiUns, Bahía BlancaGoogle Scholar
  57. Piccolo MC (2008) Climatological features of the Bahía Blanca Estuary. In: Neves R, Baretta J, Mateus M (eds) Perspectives on integrated coastal zone management in South America. IST Press, Lisbon, pp 231–239Google Scholar
  58. Piccolo MC, Diez PG (2004) Metereología del Puerto de Coronel Rosales. In: Piccolo MC, Hoffmeyer MS (eds). Ecosistema del Estuario de Bahía Blanca. EdiUns, Bahía BlancaGoogle Scholar
  59. Prego R, Santos-Echeandía J, Bernárdez P, Cobelo-García A, Varela M (2013) Trace metals in the NE Atlantic coastal zone of Finisterre (Iberian Peninsula): terrestrial and marine sources and rates of sedimentation. J Mar Syst 126:69–81CrossRefGoogle Scholar
  60. Richard FC, Bourg ACM (1991) Aqueous geochemistry of chromium: a review. Water Res 25(7):807–816CrossRefGoogle Scholar
  61. Robertson FN (1975) Hexavalent chromium in the groundwater in the Paradise Valley. Arizona Groundw 13:516–527CrossRefGoogle Scholar
  62. Ruangsomboon S, Wongrat L (2006) Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus x C. gariepinus. Aquat Toxicol 78(1):15–20CrossRefGoogle Scholar
  63. Salomons W, De Groot AJ (1978) Pollution history of trace metals in sediments, as affected by the Rhine river. In: Krumbein WE (ed) Environmental biogeochemistry. Ann Arbor Science, Ann Arbor, pp 149–162Google Scholar
  64. Santos-Echeandías J, Caetano M, Brito P, Canario J, Vale C (2012) The relevance of defining trace metal baselines in coastal waters at a regional scale: the case of the Portuguese coast (SW Europe). Mar Environ Res 79:86–99CrossRefGoogle Scholar
  65. Showell MA, Gaskin DE (1992) Partitioning of cadmium and lead within seston of coastal marine waters of the western Bay of Fundy, Canada. Arch Environ Contam Toxicol 22:325–333CrossRefGoogle Scholar
  66. Sondi I, Juracic M, Prohic E, Pravdic V (1994) Particulates and the environmental capacity for trace metals: a small river as a model for a land-sea transfer system: the Raša River estuary. Sci Total Environ 155:173–185CrossRefGoogle Scholar
  67. Soto-Jiménez MF, Páez-Osuna F, Scelfo G, Hibdon S, Franks R, Aggarawl J, Flegal RA (2008) Lead pollution in subtropical ecosystems on the SE Gulf of California Coast: a study of concentrations and isotopic composition. Mar Environ Res 66:451–458CrossRefGoogle Scholar
  68. Spetter CV, Popovich GA, Arias AH, Asteasuain RA, Freije RH, Marcovecchio JE (2015) Role of nutrients in phytoplankton development during a winter diatom bloom in a Eutrophic South American Estuary (Bahía Blanca, Argentina). J Coas Res 31(1):76–87CrossRefGoogle Scholar
  69. Srichandan S, Panigrahy RC, Baliarsingh SK, Srinivasa Rao S, Premalata P, Biraja KS, Sahu KC (2016) Distribution of trace metals in surface seawater and zooplankton of the Bay of Bengal, off Rushikulya estuary, East Coast of India. Mar Pollut Bull 111:468–475CrossRefGoogle Scholar
  70. Stecko JRP, Bendell-Young LI (2000) Contrasting the geochemistry of suspended particulate matter and deposited sediments within an estuary. Appl Geochem 15:753–775CrossRefGoogle Scholar
  71. Steding DJ, Dunlap CE, Flegal AR (2000) New isotopic evidence for chronic lead contamination in the San Francisco Bay estuary system: Implications for the persistence of past industrial lead emissions in the biosphere. P Natl Acad Sci 97(21):1118–1186CrossRefGoogle Scholar
  72. Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39(6):611–627CrossRefGoogle Scholar
  73. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33(2):241–265CrossRefGoogle Scholar
  74. Turner A, Millward GE (2002) Suspended particles: their role in estuarine biogeochemical cycles. Estuar Coast Shelf Sci 55:857–883CrossRefGoogle Scholar
  75. Van Ael E, Blust R, Bervoets L (2017) Metals in the Scheldt estuary: from environmental concentrations to bioaccumulation. Environ Pollut 228:82–91CrossRefGoogle Scholar
  76. Waeles M, Riso RD, Le Corre P (2005) Seasonal variations of cadmium speciation in the Penzé estuary, NW France. Estuar Coast Shelf Sci 65:143–152CrossRefGoogle Scholar
  77. Waeles M, Riso RD, Le Corre P (2007) Distribution and seasonal changes of lead in an estuarine system affected by agricultural practices: The Penzé estuary, NW France. Estuar Coast Shelf Sci 74:570–578CrossRefGoogle Scholar
  78. Wang M, Wang D, Wang G, Huang X, Hong H (2007) Influence of N, P additions on the transfer of nickel from phytoplankton to copepods. Environ Pollut 148:679–687CrossRefGoogle Scholar
  79. Warren LA, Zimmerman AP (1994) The importance of surface area in metal sorption by oxides and organic matter in a heterogeneous natural sediment. Appl Geochem 9(3):245–254CrossRefGoogle Scholar
  80. Widmeyer JR, Bendell-Young LI (2008) heavy metal levels in suspended sediments, Crassostrea gigas, and the risk to humans. Arch Environ Contam Toxicol 55:442–450CrossRefGoogle Scholar
  81. Zar JH (1999) Biostatistical Analysis, 4 edn. Prentice Hall, New YerseyGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Argentino de Oceanografía (IADO)Universidad Nacional del Sur (UNS)-CONICETBahía BlancaArgentina
  2. 2.Departamento de Geografía y TurismoUniversidad Nacional del Sur (UNS)Bahía BlancaArgentina
  3. 3.Facultad Regional Bahía Blanca (UTN-FRBB)Universidad Tecnológica NacionalBahía BlancaArgentina
  4. 4.Universidad FASTAMar del PlataArgentina

Personalised recommendations