Effect of plant growth on Pb and Zn geoaccumulation in 300-year-old mine tailings of Zacatecas, México

  • Juan Armando Flores de la Torre
  • Kerry Mitchell
  • Magdalena Samantha Ramos Gómez
  • Alma Lilian Guerrero Barrera
  • Laura Yamamoto Flores
  • Francisco Javier Avelar González
Original Article


Concentrations of Pb and Zn, plant uptake of these metals, the influence of the plants’ growth on the physicochemical properties and metal concentrations in the tailings of an abandoned 300-year-old mine tailing dam in Zacatecas, Mexico were investigated. Tailings were found to be heavily contaminated, with average levels of 2621 ± 53 and 3827 ± 83 mg/kg for Pb and Zn, respectively (maximum concentrations of 8466 ± 116 and 12,475 ± 324 mg/kg, respectively), exceeding international standards. Though physico-chemical conditions (pH, conductivity, redox potential, moisture, organic matter, nitrate, nitrite, ammonium nitrogen, total nitrogen, phosphorus and sulfates) do not favor the development of vegetation, some plants have adapted to these adverse conditions. Moreover, there was a significant reduction of Pb and Zn concentration in the rhizosphere (between 10–78% for Pb and 18–62% for Zn, depending on plant species). Sporobolus airoides showed average biomass concentrations of 173 ± 2 and 313 ± 6 mg/kg, for Pb and Zn, respectively; which implies a risk for mobility and possible incorporation into the food chain. Barcleyanthus salicifolius, Asclepsias linaria and Cortaderia selloana on the other hand, showed average biomass concentrations of 28 ± 3 and 121 ± 5 mg/kg of Pb and Zn, respectively, thus representing a lower biomagnification risk. The effect of these plants to reduce metal concentrations in the rhizosphere, improve physico-chemical conditions in metal polluted substrates, but with limited metal accumulation in biomass, suggests that they can be evaluated for use in stabilizing metal polluted tailings.


Contamination Metals Bioaccumulation Translocation Rhizosphere 



We acknowledge the support of Dr. Maria Elena Siqueiros Delgado, herbarium supervisor, Universidad Autónoma de Aguascalientes, during the identification of the plants analyzed in this study. We also acknowledge the Professional Development Program (PRODEP) of the Public Education Secretary, Mexico for the funding used to complete this study.


  1. Adamo P, Denaix L, Terribile F, Zampella M (2003) Characterization of heavy metals in contaminated volcanic soils of the Solofrana river valley (southern Italy). Geoderma 117:347–366CrossRefGoogle Scholar
  2. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881CrossRefGoogle Scholar
  3. Al-Rashidi TT, Sulaiman H (2013) Biocencentration of heavy metals in Alfalfa (Medicago sativa) from farm soils around Sohar industrial area in Oman. APCBEE Proc 5:271–278CrossRefGoogle Scholar
  4. Álvarez-Ayuso E, Otones V, Murciego A, García-Sánchez A, Santa Regina I (2012) Antimony, arsenic and lead distribution in soils and plants of an agricultural área impacted by former mining activities. Sci Total Environ 439:35–43CrossRefGoogle Scholar
  5. Álvarez-Ayuso E, Otones V, Murciego A, García-Sánchez A, Santa Regina I (2013) Zinc, cadmium and thallium distribution in soils and plants of an area impacted by sphalerite-bearing mine wastes. Geoderma 207–208:25–34CrossRefGoogle Scholar
  6. Andráš P, Turisová I, Krnáč J, Dirner V, Voleková-Lalinská B, Buccheri G, Jeleň S (2012) Hazards of heavy metal contamination at L’ubietová Cu-deposit (Slovakia). Proced Environ Sci 14:3–21CrossRefGoogle Scholar
  7. Bech J, Roca N, Tume P, Ramos-Miras J, Gil C, Boluda R (2016) Screening for new accumulator plants in potential hazards elements polluted soil surrounding Peruvian mine tailings. Catena 136:66–73CrossRefGoogle Scholar
  8. Bini C, Wahsha M, Fontana S, Maleci L (2012) Effects of heavy metal son morphological characteristics of Taraxacumofficinaleweb growing on mine soils in NE Italy. J Geochem Explor 123:101–108CrossRefGoogle Scholar
  9. Canadian Society of Soil Science (1993) Soil sampling and methods analysis. Lewis Publishers, Boca Raton, p 823Google Scholar
  10. CCME (2015) Canadian environmental quality guidelines. Canadian Council of Ministers of the Environment, WinipegGoogle Scholar
  11. Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd-hyperaccumulator Solanumnigrum L. and functional endophyte Pseudomonassp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308CrossRefGoogle Scholar
  12. Ding Z, Wang Q, Hu X (2011) Fractionation of Zn and Pb in bulk soil size fractions of wáter-soluble miro aggregates of lead/zinc tailing soil under simulated acid rain. Proced Environ Sci 10:325–330CrossRefGoogle Scholar
  13. Domenéc R, Vila M (2008) Cortaderia selloanaseed germination under different ecological conditions. Acta Oecol 33:93–96CrossRefGoogle Scholar
  14. Domènec R, Vila M, Gesti J, Serraolses I (2006) Neighbourhood association of Cortaderia selloanainvasion, soil properties and plant community structure in Mediterranean coastal grasslands. Acta Oecol 29:171–177CrossRefGoogle Scholar
  15. Dominguez M, Nieto A, Marín JC, Keck AS, Jeffery E, Céspedes CL (2005) Antioxidant activities of extracts from Barkleyanthus salicifloius(Asteraceae) and Penstemon gentianoides(Scrophulariaceae). J Agric Food Chem 53:5889–5895CrossRefGoogle Scholar
  16. Elmore JA, Mustard JF, Manning SJ, Lobell DB (2000) Quantifying vegetation change in semiarid environments: precision and accuracy of spectral mixture analysis and the normalized difference vegetation index. Rem Sens Environ 73:87–102CrossRefGoogle Scholar
  17. Fernandez FJ, del Papa LM, Mange E, Teta P, Montero EC, Pardiñas UF (2016) Human subsistence and environmental stability during the last 2200 years in Epullan Chica cave (northwestern Patagonia, Argentina): a perspective from the zooarcheological record. Q IntGoogle Scholar
  18. Flores J, Albert LA (2004) Environmental lead in México 1990–2002. Environ Contam Toxicol 181:37–109Google Scholar
  19. Flores Moya A, Soto J, Sánchez A, Altamirano M, Reyes G, Conde F (1995) Check-list of (S. Spain) seaweeds. I. phaeophyeae. Acta Bot Malacit 20:5–18Google Scholar
  20. Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59CrossRefGoogle Scholar
  21. Gelviz Gelvez S, Pavón P, Illoldi Rangel P, Ballesteros Barrera C (2015) Ecological niche modeling under climate change to select shrubs for ecological restoration in Central Mexico. Ecol Eng 74:302–309CrossRefGoogle Scholar
  22. Guadlardi I, Domenico C, De Rosa R, Buttafuoco G (2015) Assessment of lead pollution in topsoils of a southern Italy area: analysis of urban and peri-urban environment. J Environ Sci 33:179–187CrossRefGoogle Scholar
  23. Guala Sebastián D, Vega Flora A, Covelo Emma F (2010) The dynamics of heavy metals in plant–soil interactions. Ecol Model 221:1148–1152CrossRefGoogle Scholar
  24. Hao Q, Jiang C (2015) Heavy metal concentrations in soils and plants in Rongxi Manganese mine of Chongqing southwest of China. Acta Ecol Sin 35:46–51CrossRefGoogle Scholar
  25. Houben D, Evrard L, Sonnet P (2013) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92(11):1450–1457CrossRefGoogle Scholar
  26. Kim KR, Owens G, Naidu R (2010) Effect of root-induced chemical changes on dynamics and plant uptake of heavy metals in rhizosphere soils. Pedosphere 20:494–504CrossRefGoogle Scholar
  27. Laghmouchi Y, Belmehdi O, Bouyahya A, Senhaji NS, Abrini J (2017) Effect of temperature, salt stress and pH on seed germination of medicinal plant Origanum compactum. Biocatal Agric Biotechnol 10(March):156–160Google Scholar
  28. Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014a) A review of soils heavy metal pollution form mines in China: pollution and health risk assessment. Sci Total Environ 468–469:843–853CrossRefGoogle Scholar
  29. Malandrino M, Abollino O, Buoso S, Giacomino A, La Gioia C, Mentasti E (2011) Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite. Chemosphere 82:169–178CrossRefGoogle Scholar
  30. McLean JE, Bledsoe BE (1992) Behaviour of metals in soils. EPA Ground Water Issue 542:1–25Google Scholar
  31. Minkina TM, Motuzova GV, Madzhieva SS, Nazarenko OG (2012) Ecological resistance of the soil–plant system to contamination by heavy metals. J Geochem Explor 123:33–40CrossRefGoogle Scholar
  32. Mitchell KN, Ramos Gómez MS, Guerrero Barrera AL, Yamamoto Flores L, Flores de la Torre JA, Avelar González FJ (2016) Evaluation of environmental risk of metal contaminated soils and sediments near mining sites in Aguascalientes, Mexico. Bull Environ Contam Toxicol 97:216–224CrossRefGoogle Scholar
  33. Moore KP, Sikora FJ (2014) Soil test methods from the southeastern United States, Southern cooperative series bulletin no. 419Google Scholar
  34. Müller G (1969) Index of geoaccumulation in sediments of the Rhine river. GeoJournal 2:108–118Google Scholar
  35. NMX-AA-132-SCFI-2006 (2006) Norma Mexicana, Muestreo de suelos para la identificación y la cuantificación de metales y metaloides y manejo de la muestra, MéxicoGoogle Scholar
  36. NOM-147-SEMARNAT/SSA1-2004 (2004) Norma Oficial Mexicana, Secretaría del Medio Ambiente y Recursos Naturales, Criterios para determinar concentraciones de remediación de suelosGoogle Scholar
  37. Otones V, Álvarez-Ayuso E, García Sánchez A, Santa Regina I, Murciego A (2011) Mobility and phytoavailability of arsenic in an abandoned mining área. Geoderma 166:153–161CrossRefGoogle Scholar
  38. Plante AF, Fernández JM, Haddix ML, Steinweg JM, Conant RT (2011) Biological, chemical and thermal indices of soil organic stability in four grassland soils. Soil Biol Biochem 43:101–1058CrossRefGoogle Scholar
  39. Pratas J, Favas PJC, D’Souza R, Varun M, Paul MS (2013) Phytoremedial assessment of flora tolerant to heavy metals in the contaminated soils of an abandoned Pb mine in Central Portugal. Chemosphere 90:2216–2225CrossRefGoogle Scholar
  40. Rascón VLA, Estrada J, Velazquez CA, Garibay Escobar A, Medina Juárez LA, Gámez Meza N, Robles Zepeda RE (2015) Antiproliferative and apoptotic activities of extracts of Asclepias sublata. Pharm Biol 53:1741–1751CrossRefGoogle Scholar
  41. Rashed MN (2010) Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at southeast Egypt. J Hazard Mater 178:739–746CrossRefGoogle Scholar
  42. Relić D, Dordević D, Popović A (2011) Assessment of the pseudo total metal content in alluvial sediments from Danube river,Serbia. Environ Earth Sci 63:1303–1317CrossRefGoogle Scholar
  43. Roberts AE, Boylen CW, Nierzwicki-Bauer SA (2014) Effects of lead accumulation on the Azollacaroliniana-Anabaenaassociation. Ecotoxicol Environ Saf 102:100–104CrossRefGoogle Scholar
  44. Robledo-Santoyo E, Maldonado-Torres R (1997) Manual de Procedimientos para el Analisis de Suelo. Universidad Autónoma de Chapingo, TexcocoGoogle Scholar
  45. Servicio Geológico Mexicano (2015) Anuario Estadísitico de la Minería MexicanaGoogle Scholar
  46. Soil Science Society of America Book Series (2007) Methods of soil analysis part 3, chemical methods, p 1390Google Scholar
  47. Stuessy TF (2009) Plant taxonomy, the sustematic evaluation of comparative data, 2nd edn. Columbia University Press, New YorkGoogle Scholar
  48. Tüzen M (2003) Determination of heavy metals in soil, mushroom and plant samples by atomic absorption spectrometry. Microchem J 74:289–297CrossRefGoogle Scholar
  49. United States Department of Agriculture, Natural Resources Conservation Service (2000) Heavy metal soil contamination. Soil Quality, Urban Technical NoteGoogle Scholar
  50. United States Department of Agriculture, Textural soil Classification (1987) Study guideGoogle Scholar
  51. USEPA (1992) Preparation of soil sampling protocols: sampling techniques and strategies. US Environment Protection Agency, WashingtonGoogle Scholar
  52. USEPA (1996) Method 3050B—acid digestion of sediments, sludges, and soils. 2:12Google Scholar
  53. USEPA (2002) Soil waste and emergency response. US Environment Protection Agency, WashingtonGoogle Scholar
  54. USEPA (2004) Soil and waste pH (EPA method 9045-D). US Environment Protection Agency, CaliforniaGoogle Scholar
  55. Vanessa NK, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69CrossRefGoogle Scholar
  56. Velásquez L, Dussan J (2009) Biosorption and bioaccumulation of heavy metal son dead and living biomass of Bacillus sphaericus. J Hazard Mater 167:713–716CrossRefGoogle Scholar
  57. Wang QR, Dong Y, Cui Y, Liu X (2001) Instances of soil and crop heavy metal contaminarion in China. Soil Sediment Contam 10:497–510CrossRefGoogle Scholar
  58. Xiong C, Zhang Y, Xu X, Lu Y, Ouyang B, Ye Z, Li H (2013) Lotus roots accumulate heavy metals independently from soil in main production regions of China. Scent Hortic 164:295–302CrossRefGoogle Scholar
  59. Zagury GJ, Oudjehani K, Deschênes L (2004) Characterization and availability of cyanide in solid mine tailings from gold extraction plants. Sci Total Environ 320:211–224CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Juan Armando Flores de la Torre
    • 1
    • 2
  • Kerry Mitchell
    • 1
    • 3
  • Magdalena Samantha Ramos Gómez
    • 1
  • Alma Lilian Guerrero Barrera
    • 1
  • Laura Yamamoto Flores
    • 1
  • Francisco Javier Avelar González
    • 1
  1. 1.Centro de Ciencias BásicasUniversidad Autónoma de AguascalientesAguascalientesMéxico
  2. 2.Universidad Autónoma de Zacatecas, Unidad Académica de Ciencias QuímicasZacatecasMéxico
  3. 3.Department of Public Health and Preventive MedicineSt. George’s UniversitySt. George’sGrenada

Personalised recommendations