Skip to main content
Log in

In situ measurements of radionuclide concentrations in south of Mugla city, Turkey

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The paper presents distribution of radionuclide elements for different samples of igneous, metamorphic and sedimentary rocks in the south of Mugla city, Turkey. The composite image maps for each of radioelement ratios (eU, eTh and K), radiogenic heat-producing map (RHP) and absorbed dose rate of these radionuclides in air were calculated and generated anomaly maps. The obtained results were compared with geological units of the study area. It has been observed that western side of the study area (the Bodrum Peninsula) is mainly characterized volcanic rocks that display high radioactivity concentrations (for U, Th, and K, 120.2 Bq/kg, 101.60 Bq/kg, and 690.1 Bq/kg, respectively). The latite–andesite association causes higher Th concentrations (varying between 1.5 and 101.6 Bq/kg). Higher U and Th anomalies are close relation with the mineral compositions of the volcanic rocks and their silica contents. Due to K-bearing minerals such as K-feldspar (orthoclase, sanidine, biotite) higher K concentrations are determined. On the other hand, metamorphic and sedimentary rocks is dominant in the eastern side of the study area. The sedimentary units have the lowest radioactive concentrations (for U, Th, and K, 8, 0.20, and 24 Bq/kg, respectively), whereas marble and cherty marbles has higher U and K concentrations. It has been also seen that schist and calc-schists exhibit important thorium enrichment (80–100 Bq/kg).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Modified from1/500,000 digital geological maps database of Mineral Research and Exploration General Directorate). Red circles show the measurement points, b maximized geological map of Bodrum Peninsula

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Trabulsy HA, Khater AEM, Habbani FI (2011) Radioactivity levels and radiological hazard indices at the Saudi coastline of the Gulf of Aqaba. Radiat Phys Chem 80:343–348

    Article  Google Scholar 

  • Chiozzi P, Pasquale V, Verdoya M (1998) Ground radiometric survey of U, Th and K on the Lipari Island, Italy. J Appl Geophys 38:209–217. https://doi.org/10.1016/S0926-9851(97)00035-9

    Article  Google Scholar 

  • Chiozzi P, De Felice P, Pasquale V (1999) Field γ-ray spectrometry on the Vulcano island (Aeolian Arc, Italy). Appl Radiat Isot 51:247–253. https://doi.org/10.1016/S0969-8043(98)00181-X

    Article  Google Scholar 

  • Chiozzi P, Pasquale V, Verdoya M, Minato S (2001) Natural gamma-radiation in the Aeolian volcanic arc. Appl Radiat Isot 55:737–744. https://doi.org/10.1016/S0969-8043(01)00127-0

    Article  Google Scholar 

  • Doretti L, Ferrar D, Barison G, Gerbasi R, Battiston G (1992) Natural radionuclides in the muds and waters used in thermal therapy in Abano Terme, Italy. Radiat Prot Dosimetry 45(1):175–178

    Article  Google Scholar 

  • Duval JS (1983) Composite colour images of aerial gamma-ray spectrometry data. Geophysics 48:722–735

    Article  Google Scholar 

  • Ebaid YY, El-Tahawy MS, El-Lakany et al (2000) Environmental radioactivity measurements of Egyptian soils. J Radioanal Nucl Chem 243:543–550. https://doi.org/10.1016/j.ejmp.2014.07.232

    Article  Google Scholar 

  • Eggeling L, Genter A, Kölbel T, Münch W (2013) Impact of natural radionuclides on geothermal exploitation in the Upper Rhine Graben. Geothermics 47:80–88

    Article  Google Scholar 

  • Ercan T, Günay E, Turkecan A (1984) Petrology of the igneous rocks of the Bodrum Peninsula and their genetic implication. Bull Geol Soc Turk 27:85–98

    Google Scholar 

  • Erees FS, Akozcan S, Parlak Y, Cam S (2006) Assessment of dose rates around Manisa (Turkey). Radiat Meas 41:598–601. https://doi.org/10.1016/j.radmeas.2005.11.004

    Article  Google Scholar 

  • Florou H, Kriditis P (1992) Gamma radiation measurements and dose rate in the coastal areas of a volcanic island, Aegan Sea, Greece. Radiat Prot Dosimetry 45:277–279

    Article  Google Scholar 

  • Genc SC, Karacık Z, Altunkaynak S, Yılmaz Y (2001) Geology of a magmatic complex in the Bodrum peninsula, SW Turkey. International Earth Sciences Colloquium on the Aegean Region, I˙zmir, pp 63–68

    Google Scholar 

  • Haenel R, Rybach L, Stegena L (1988) Handbook of terrestrial heat-flow density determination. Solid Earth Sciences Library, vol 4, Springer, Netherlands, p 486. https://doi.org/10.1007/978-94-009-2847-3

  • Hurley WB, (2009) Natural Radioactivity in the Geologic Environment. National Nuclear Security Administration, Nevada Site Office

  • IAEA International Atomic Energy Agency (1989) Construction and use of calibration facilities for radiometric field equipment. In: Proceedings of IAEA technical reports series 309, International Atomic Energy Agency, Vienna, p 123

  • IAEA International Atomic Energy Agency (1991) Airborne gamma ray spectrometer surveying. In: Proceedings of IAEA technical reports series 323, International Atomic Energy Agency, Vienna, p 116

  • IAEA International Atomic Energy Agency (2003) Guidelines for radioelement mapping using gamma ray spectrometry data. In: Proceedings of IAEA technical reports series 1363, International Atomic Energy Agency, Vienna, p 179

  • Jaupart C, Mareschal JC (2013) Constraints on crustal heat production from heat flow data. Treatise Geochem Second Ed 4:53–73. https://doi.org/10.1016/B978-0-08-095975-7.00302-8

    Google Scholar 

  • Kalyoncuoglu UY (2015) In situ gamma source radioactivity measurement in Isparta plain. Turk Environ Earth Sci 73:3159–3175. https://doi.org/10.1007/s12665-014-3610-1

    Article  Google Scholar 

  • Karagianni EE, Papazachos CB (2007) Shear velocity structure in the Aegean region obtained by joint inversion of Rayleigh and Love waves. In: Taymaz T, Yilmaz Y, Dilek Y (eds) The geodynamics of the Aegean and Anatolia, vol 291. Geological Society London Special Publication, London, pp 159–181

    Google Scholar 

  • Karahan G, Bayulken A (2000) Assessment of gamma dose rates around Istanbul. Turk Environ Radioact 47:213–221

    Article  Google Scholar 

  • Kathren RL (1998) NORM sources and their origins. Appl Radiat Isot 49(3):149–168

    Article  Google Scholar 

  • Kukkonen IT, Lahtinen R (2001) Variation of radiogenic heat production rate in 2.8–1.8 Ga old rocks in the Central Fennoscandian shield. Phys Earth Planet Interiors 126:279–294. https://doi.org/10.1016/S0031-9201(01)00261-8

    Article  Google Scholar 

  • Kumar PS, Reddy GK (2004) Radioelements and heat production of an exposed Archaean crustal cross-section, Dharwar craton, south India. Earth Planet Sci Lett 224:309–324. https://doi.org/10.1016/j.epsl.2004.05.032

    Article  Google Scholar 

  • Kumar PS, Menon R, Reddy GK (2007) The role of radiogenic heat production in the thermal evolution of a Proterozoic granulite-facies orogenic belt: Eastern Ghats, Indian Shield. Earth Planet Sci Lett 254:39–54. https://doi.org/10.1016/j.epsl.2006.11.018

    Article  Google Scholar 

  • Maden N, Akaryali E (2015) A review for genesis of continental arc magmas: U, Th, K and radiogenic heat production data from the Gümüşhane Pluton in the Eastern Pontides (NE Türkiye). Tectonophysics 664:225–243. https://doi.org/10.1016/j.tecto.2015.09.023

    Article  Google Scholar 

  • Marchalland CP, Fairbridge RW (1999) Encyclopedia of geochemistry. Kluwer Academic Press, Dordrecht

  • Mareschal JC, Jaupart C, Gariépy C, Cheng LZ, Guillou-Frottier L, Bienfait G, Lapointe R (2000) Heat flow and deep thermal structure near the southeastern edge of the Canadian Shield. Can J Earth Sci 37:399–414. https://doi.org/10.1139/e98-106

    Article  Google Scholar 

  • Narayana Y, Somashekarappa HM, Karunakara N, Avadhani DN, Mahesh HM, Siddappa K (2001) Natural Radioactivity in the soil samples of coastal Karnataka of South India. Health Phys 80:24–33

    Article  Google Scholar 

  • Narayana Y, Shetty PK, Siddappa K (2005) Enrichment of natural radionuclides in monazite areas of coastal Kerala. Int Congr Ser 1276:333–334

    Article  Google Scholar 

  • Perry HKC, Jaupart C, Mareschal J, Bienfait G (2006) Crustal heat production in the Superior Province and in North America inferred from heat flow data. Can Shield 111:1–20. https://doi.org/10.1029/2005JB003893

    Google Scholar 

  • Ramasamy V, Paramasivam K, Suresh G, Jose MT (2014) Role of sediment characteristics on natural radiation level of the Vaigai river sediment, Tamil Nadu, India. J Environ Radioact 127:64–74

    Article  Google Scholar 

  • Ramola RC, Manjulata Y, Gusain GS (2014) Distribution of natural radionuclide along Main Central Thrust in Garhwal Himalaya. J Radiat Res Appl Sci 7:614–619

    Article  Google Scholar 

  • Ray L, Roy S, Srinivasan R (2008) High radiogenic heat production in the Kerala Khondalite Block, Southern Granulite Province. India. Int J Earth Sci 97:257–267. https://doi.org/10.1007/s00531-007-0278-8

    Article  Google Scholar 

  • Rosner G, Bunzl K, Hötzl H, Winkler R (1984) Low level measurements of natural radionuclides in soil samples around a coal-fired power plant. Nucl Instrum Methods Phys Res 223:585–589

    Article  Google Scholar 

  • Rybach L (1988) Determination of the heat production rate. In: Haenel R, Rybach L, Stegena L (eds) Handbook of Terrestrial Heat-Flow Density Determination. Kluwer Academic Publishers, Dordrecht, pp 125–142

    Google Scholar 

  • Saqan SA, Kullab MK, Ismail AM (2001) Radionuclides in hot mineral spring waters in Jordan. J Environ Radioact 52:99–107

    Article  Google Scholar 

  • Saunders P, Priestley K, Taymaz T (1998) Variations in the crustal structure beneath western Turkey. Geophys J Int 134:373–389

    Article  Google Scholar 

  • Sayın N (2013) Radioactive element contents of some granites used as building materials: insights into the radiological hazards. Bull Eng Geol Environ 72:579–587

    Article  Google Scholar 

  • Selvasekarapandian S, Sivakumar R, Manikandan NM, Meenakshisundaram V, Raghunath VM, Gajenndran V (2000) Natural radionuclide distribution in soils of Gudalore, India. Appl Radiat Isot 52:299–306

    Article  Google Scholar 

  • Tan G, Li C, Li M, (1991) Investigation of environment natural penetrating radiation level in Guangdong Province. Radiat Prot (in Chinese with English abstract) 11:47–57

    Google Scholar 

  • Telford W, Sheriff R (1990) Applied Geophysics. Cambridge University Press, p 770. ISBN:9781139635691

  • Tezel T, Erduran M, Alptekin O (2007) Crustal shear wave velocity structure of Turkey by surface wave dispersion analysis. Ann Geophys 50:177–190

    Google Scholar 

  • UNSCEAR United Nations Scientific Committee on the Effects of Atomic Radiation (2000) Sources and Effects of Ionizing Radiation, United Nations, New York

    Google Scholar 

  • Van Schmus WR (1995) Natural radioactivity of the crust and mantle.  A Handbook of Physical Constants (AGU Reference Shelf 1), Global Earth Physics, pp 283–291. https://doi.org/10.1029/RF001p0283

  • Wang Q, Song J, Li X, Yuan H, Li N, Cao L (2016) Environmental evolution records reflected by radionuclides in the sediment of coastal wetlands: a case study in the Yellow River Estuary wetland. J Environ Radioact 162–163:87–96

    Article  Google Scholar 

  • Youssef MAS, Elkhodary ST (2013) Utilization of airborne gamma ray spectrometric data for geological mapping, radioactive mineral exploration and environmental monitoring of southeastern Aswan city, South Eastern Desert, Egypt. Geophys J Int 195:1689–1700. https://doi.org/10.1093/gji/ggt375

    Article  Google Scholar 

  • Zhu L, Mitchell BJ, Akyol N, Cemen I, Kekovali K (2006) Crustal thickness variations in the agean region and implications fot the extension of continental crust, Journal of. Geophys Res 111:B01301

    Google Scholar 

Download references

Acknowledgements

This work is primarily supported by Suleyman Demirel University (Project No. 05283-DR-14). The authors greatly appreciate constructive and thoughtful comments from an anonymous reviewers and Dr. James W. LaMoreaux (Editor).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezgi Erbek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erbek, E., Dolmaz, M.N. In situ measurements of radionuclide concentrations in south of Mugla city, Turkey. Environ Earth Sci 77, 377 (2018). https://doi.org/10.1007/s12665-018-7562-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7562-8

Keywords

Navigation